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Abstract—Vector problems with the lexicographic principle
of optimality are formulated and investigated. We have revealed
conditions of existence of solutions of multi-criteria problems of
lexicographic optimization with an unbounded feasible set on
the basis of applying properties of a recession cone of a convex
feasible set, the cone which puts in order a feasible set
lexicographically with respect to optimization criteria.
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l. INTRODUCTION

Among vector problems, lexicographic problems form a
fairly wide and important class of optimization problems [1-
3]. The lexicographic approach to solving multicriteria
problems consists in a strict ranking of criteria in terms of
relative importance and allows you to optimize a more
important criterion at the expense of any losses for all other,
less important criteria. Most often, such multicriteria problems
arise when additional criteria are successively introduced into
ordinary scalar optimization problems, which may not have a
unique solution.

The aim of the research presented in this article is to
establish conditions for the solvability of multicriteria
lexicographic optimization problems with an unbounded
admissible set based on the use of the properties of a recessive
cone of a convex feasible set [4], a cone lexicographically
ordering the feasible set with respect to optimization criteria
[5-6]. In this paper, we present new results that continue the
research reflected, in particular, in [6-9] and concerning the
existence of solutions to vector problems of lexicographic
optimization.

Il. PROBLEM STATEMENT

In the criterion space, we introduce a binary relation of the
lexicographic order between vectors z = (z4, z,, ..., Z,) and
z' =(z1,2},..,z;) such that z>lz o (z=2z)v

(Elj € NpVieN,_, (z > zj, z; = Z{)), where N, = @.

Let us consider a lexicographic optimization problem of
the following type: Z, (F,X): max"“{F(x)|x € X}, where
F(x) = (f1(x)' ---'fe(x)), €22, fi(x) = (cy,x), ¢, €ER™,
keN,={12,...,¢}, X={x€ R"| g'(x) < 0,x >0, i €
Nn}, X # 0, g'(x), i € N, are convex functions. In the
problem of lexicographic optimization, particular criteria are
ordered by importance. This gives rise to the concept of the
lexicographic optimum.
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By solving the problem Z, (F, X) we mean the search for
elements of the set L(F,X) of lexicographic optimal
solutions, which we define in this way:

L(F,X) = {x € X|v(x,F,X) = 0},

where v(x, F,X) = {x' € X|3j € Np: fi(x") > fi(x)A j =
= min{i € Np: fi(x") # f;(x)}}.

It follows directly from the definition of lexicographically
optimal solutions that the set L(F, X) can also be specified
using recurrence relations. Thus,

Li(F,X) = Argmax{f;(x):x € L;_y(F,X), i € N, (1)

where Arg max{ -} is a set of all optimal solutions to the
corresponding maximization problem, L,(F,X)=X ,
L,(F,X) = L(F,X).

It follows from relations (1) that the inclusions of the
sequence of sets

X2L,(F,X) 2 L,(F,X) 2...2 L,(F,X) = L(F, X),

is a true, it means each next particular criterion narrows the set
of solutions obtained taking into account all the previous
particular criteria. As it is known [1, 2], a set L(F, X) can be
defined as the result of solving a sequence of £ scalar convex
programming problems Z, (F,X), i € N,. So, the problem
Z, (F,X) can be viewed as a sequential optimization problem.
Let us note the important properties of problems
Z,,(F,X), i € N, [7]: any local minimum (maximum) is a
global minimum (maximum).

Definition 1. A solution x* € X to a problem Z, (F, X)
will be called lexicographically optimal if it is not worse than
any other admissible solution y € X in understanding the
relation >L, that is, if F(x*) — F(y) =t 0.

So, for an arbitrary x € X, the assertion is true
x€LF,X) e {yeX|F(y) > F(x)} = 0.

In the lexicographic problem, optimizations achieve an
arbitrarily small increase in a more important criterion at the
expense of any losses in other less important criteria.

The validity of such properties follows from the definition
of the lexicographically optimal solution of the problem
Z,(F,X).


https://doi.org/10.54381/pci2023.09
mailto:mariia.lomaha@uzhnu.edu.ua

Property 1. If for an feasible solution x° € X and
vx € X\{x° of the problem Z,(F,X) the inequality
f1(x) < f1(x®) holds, then x° € L(F, X).

Property 2. If for an feasible solution x € X of the problem
Z,(F,X) 3x"€ X\{x} such that fi(x') > fi(x) , then
x & L(F,X).

I1l.  EXISTENCE OF LEXICOGRAPHICALLY OPTIMAL
SOLUTIONS

The solvability of the problem of finding lexicographically
optimal solutions on a feasible set X and the structure of the
set of optimal solutions depend on the properties of the order
of the preference relation, the structure of the feasible
domainX, the nature of its elements, properties of the vector
function F(x), etc.

According to [2], the finiteness of the set X is a sufficient
condition for the existence of optimal solutions to the
lexicographic problem optimization. Also, the set L(F, X) is
not empty if the set of vector estimates Y = {F (x)|x € X} is
bounded and closed. However, in the case of an infinite
feasible set X, the set of lexicographically optimal solutions
may be empty.

It is topical to study the issues of solvability of
lexicographic vector optimization problems in which the set
of feasible solutions is not bounded and convex.

The unboundedness of a convex set X means that
0*X\{0} = @,
where
0*X={y eR"|VxeX:x+ty € X, t = 0}

is the recessive cone of the set X.

We will analyze the problem Z, (F, X)taking into account
the properties of the recessive cone 0*X [4] and the cone
KL = {x € R"|Cx >' 0} lexicographically ordering the
admissible set with respect to the optimization criteria, which
we will also call the cone of promising [5] lexicographic
directions of the problem Z, (F, X), since the transition from
any point x; € R™ to the point x, = x, + y where ybelongs
tothe cone K leads to the inequality Cx, > Cx,, that is, to
the lexicographic increase in the values of the vector criterion
of the problem.

The cone K* that determines the lexicographic order in
space R? is a convex cone of directions of lexicographically
positive vectors and can be represented as a union of disjoint
sets:

K=K, UK, U...UK,,
where

K, ={x €ER"c;x >0},

K, ={x €R"| c;x =0, c;x>01},

Ky, ={x €ER™c;x =0, c,x =0,...,cp_1x =0, cpx > 0}.
For an arbitrary x € X, the statement [2] is true:
x€LF,X)e (x+KHNnX=0. )

For the problems of lexicographic optimization, we
consider the necessary and sufficient conditions for the
existence of lexicographically optimal solutions, which were
started in work [2] and continued in [6-9].

In the case of a convex closed unbounded feasible set X of
the problem Z, (F, X), the theorem is valid.

Theorem 1. A necessary condition for the existence of
lexicographically optimal solutions to the problem Z, (F, X) is
the empty intersection of the cone K of promising
lexicographic directions and the recessive cone 0*X, that is,

KEnOotX = 9. 3)

Proof. Let us suppose by way of contradiction, that the set
L(F,X) # @, but condition (3) is not satisfied, that is, the
intersection of the cones K' and 0*X is not empty:
KX n 0tX = @. Then the following relations are true:

x+KHNX2x+KHN(x+0TX) =

=x + (KX n 0*X) # @. Taking into account formula (2), we
can conclude that the set L(F, X) = @. But this contradicts the
condition of the theorem and thereby proves its validity.

The converse statement of the theorem is generally not
true. In the monograph [2] an example is given in which
condition (3) is satisfied for an feasible set X, but the set of its
extreme points is unbounded, and as a result, the set
L(F,X) = 0.

The direction of the lexicographically positive vector will
be called the lexicographically positive direction.

The theorem is true [2].

Theorem 2. Let V be a non-empty set of extreme points of
aconvex closed set. X. If V is abounded set, then the set Xhas
a lexicographic maximum if and only if it is bounded in all
lexicographically positive directions.

In our notation, under the conditions of Theorem 2, the set
L(F, X) is not empty if and only if condition (3) is satisfied.

In the case of a convex, unbounded and polyhedral set, the
corollary to Theorem 2 [2] is true.

Consequence. A closed convex polyhedral set X has a
lexicographic maximum if and only if it is bounded in all
lexicographically positive directions.

Theorem 1 and the corollary to Theorem 2 imply the
following theorem.

Theorem 3. Let the feasible set X of the problem Z, (F, X)
be a closed convex polyhedral set. A necessary and sufficient
condition for the existence of lexicographically optimal
solutions to this problem is the fulfillment of equality (3).

Note that the multifaceted condition of a convex closed
unbounded set X is essential for the statement of the fact that
condition (3) is a necessary and sufficient condition for the



existence of lexicographically optimal solutions to the
problem Z, (F, X).

IV. EXISTENCE OF LEXICOGRAPHICALLY OPTIMAL
SOLUTIONS IN INTEGER OPTIMIZATION PROBLEMS

Let us now consider the integer problem of lexicographic
optimization of the following form:
ZHF, X): maxM{F(x)|x € X nZ"},
X={x€eR"Ax < b}, X+ @,Z"<R",Z™is the set of all
integer vectors with R™.

We denote by X; = {x € R™"|Ax < b}, the convex hull of
the integer vectors of the polyhedron set X. We will call it an
integer hull X. It is obvious that X; € X. If the set X is
bounded, then the set X; is also bounded.

Theorem 4 [10] is valid.

Theorem 4. For any rational polyhedral set X, its integer
envelope X; forms a rational polyhedral set.

Like linear lexicographic optimization problems,
lexicographic linear integer optimization problems can have
an empty feasible set or have an unbounded feasible set. For a
given polyhedron, it seems difficult to find out whether its
integer hull X, is empty. However, if the feasible domain of
the integer lexicographic problem is not empty, then the
existence of its solutions can be checked by considering the
linear relaxation of the integer lexicographic problem.

Statement 1[11]. Let X = {x € R™|Ax < b} be arational
polyhedron whose integer hull is not empty, and let ¢ € R™ be
some vector, not necessarily rational. Then the optimum
max{cx|x € X} isbounded if and only if max{cx|x € X;} is
bounded.

Theorem 5. Let in the problem ZI(F,X), where
X = {x € R"|Ax < b} be a rational polyhedral unbounded
set whose integer hull is nonempty, and let K% be a cone of
lexicographic directions (not necessarily rational). Then the
problem Z, (F, X;) has lexicographic optimal solutions if and
only if the problem Z, (F, X) has solutions.

V. CONCLUSION

The existence of solutions to convex and integer
lexicographic optimization problems with linear criteria

functions and an unbounded feasible set have been
investigated. On the basis of the analysis of the specified
problems, taking into account the properties of perspective
lexicographic directed and recessive directed cones, the
necessary and sufficient conditions for the existence of
solutions to the investigated problems have been established.
The obtained conditions can be successfully used in the
development of algorithms for finding optimal solutions to
these lexicographic optimization problems.
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