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Abstract—Vector problems with the lexicographic principle 

of optimality are formulated and investigated. We have revealed 

conditions of existence of solutions of multi-criteria problems of 

lexicographic optimization with an unbounded feasible set on 

the basis of applying properties of a recession cone of a convex 

feasible set, the cone which puts in order a feasible set 

lexicographically with respect to optimization criteria. 
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I. INTRODUCTION 

Among vector problems, lexicographic problems form a 
fairly wide and important class of optimization problems [1-
3]. The lexicographic approach to solving multicriteria 
problems consists in a strict ranking of criteria in terms of 
relative importance and allows you to optimize a more 
important criterion at the expense of any losses for all other, 
less important criteria. Most often, such multicriteria problems 
arise when additional criteria are successively introduced into 
ordinary scalar optimization problems, which may not have a 
unique solution. 

The aim of the research presented in this article is to 
establish conditions for the solvability of multicriteria 
lexicographic optimization problems with an unbounded 
admissible set based on the use of the properties of a recessive 
cone of a convex feasible set [4], a cone lexicographically 
ordering the feasible set with respect to optimization criteria 
[5-6]. In this paper, we present new results that continue the 
research reflected, in particular, in [6–9] and concerning the 
existence of solutions to vector problems of lexicographic 
optimization. 

II. PROBLEM STATEMENT 

In the criterion space, we introduce a binary relation of the 
lexicographic order between vectors 𝑧 = (𝑧1, 𝑧2, … , 𝑧ℓ)  and 
𝑧′ = (𝑧1

′ , 𝑧2
′ , … , 𝑧ℓ

′)  such that 𝑧 ≥𝐿 𝑧′ ⇔  (𝑧 = 𝑧′) ∨

(∃𝑗 ∈  𝑁ℓ: ∀𝑖 ∈ 𝑁𝑗−1 (𝑧𝑗 > 𝑧𝑗
′,  𝑧𝑖 = 𝑧𝑖

′)), where 𝑁0 = ∅. 

Let us consider a lexicographic optimization problem of 
the following type: 𝑍𝐿(𝐹, 𝑋):  𝑚𝑎𝑥𝐿{𝐹(𝑥)|𝑥 ∈ 𝑋} , where 

𝐹(𝑥) = (𝑓1(𝑥), … , 𝑓ℓ(𝑥)) , ℓ ≥ 2, 𝑓𝑘(𝑥) = ⟨𝑐𝑘, 𝑥⟩ , 𝑐𝑘 ∈ 𝑅𝑛 , 

𝑘 ∈ 𝑁ℓ = {1,2, . . . , ℓ} , 𝑋 = {𝑥 ∈  𝑅𝑛| 𝑔𝑖(𝑥) ≤ 0, 𝑥 ≥ 0,  𝑖 ∈

𝑁𝑚} , 𝑋 ≠ ∅,  𝑔𝑖(𝑥),  𝑖 ∈ 𝑁𝑚  are convex functions. In the 

problem of lexicographic optimization, particular criteria are 
ordered by importance. This gives rise to the concept of the 
lexicographic optimum. 

By solving the problem 𝑍𝐿(𝐹, 𝑋) we mean the search for 
elements of the set 𝐿(𝐹, 𝑋)  of lexicographic optimal 
solutions, which we define in this way:  

𝐿(𝐹, 𝑋) = {𝑥 ∈ 𝑋|𝜐(𝑥, 𝐹, 𝑋) = ∅},  

where 𝜐(𝑥, 𝐹, 𝑋) = {𝑥′ ∈ 𝑋|∃𝑗 ∈ 𝑁ℓ: 𝑓𝑗(𝑥′)   > 𝑓𝑗(𝑥) ∧  𝑗 =

 = 𝑚𝑖𝑛{𝑖 ∈ 𝑁ℓ: 𝑓𝑖(𝑥′) ≠ 𝑓𝑖(𝑥)}}. 

It follows directly from the definition of lexicographically 
optimal solutions that the set 𝐿(𝐹, 𝑋) can also be specified 
using recurrence relations. Thus, 

 𝐿𝑖(𝐹, 𝑋) = 𝐴𝑟𝑔𝑚𝑎𝑥{ 𝑓𝑖(𝑥): 𝑥 ∈ 𝐿𝑖−1(𝐹, 𝑋),  𝑖 ∈ 𝑁ℓ (1) 

where 𝐴𝑟𝑔 𝑚𝑎𝑥{ ⋅}  is a set of all optimal solutions to the 
corresponding maximization problem, 𝐿0(𝐹, 𝑋) = 𝑋 , 
𝐿ℓ(𝐹, 𝑋) = 𝐿(𝐹, 𝑋).  

It follows from relations (1) that the inclusions of the 
sequence of sets  

𝑋 ⊇ 𝐿1(𝐹, 𝑋) ⊇ 𝐿2(𝐹, 𝑋) ⊇. . . ⊇ 𝐿ℓ(𝐹, 𝑋) = 𝐿(𝐹, 𝑋) 

is a true, it means each next particular criterion narrows the set 
of solutions obtained taking into account all the previous 
particular criteria. As it is known [1, 2], a set 𝐿(𝐹, 𝑋) can be 
defined as the result of solving a sequence of ℓ scalar convex 
programming problems 𝑍𝐿𝑖

(𝐹, 𝑋),  𝑖 ∈ 𝑁ℓ . So, the problem 

𝑍𝐿(𝐹, 𝑋) can be viewed as a sequential optimization problem. 
Let us note the important properties of problems 
𝑍𝐿𝑖

(𝐹, 𝑋),  𝑖 ∈ 𝑁ℓ, [7]: any local minimum (maximum) is a 

global minimum (maximum). 

Definition 1. A solution 𝑥∗ ∈ 𝑋  to a problem 𝑍𝐿(𝐹, 𝑋) 
will be called lexicographically optimal if it is not worse than 
any other admissible solution 𝑦 ∈ 𝑋  in understanding the 
relation ≥𝐿, that is, if  𝐹(𝑥∗) − 𝐹(𝑦) ≥𝐿 0. 

So, for an arbitrary 𝑥 ∈ 𝑋, the assertion is true 

𝑥 ∈ 𝐿(𝐹, 𝑋) ⇔ {𝑦 ∈ 𝑋|𝐹(𝑦) >𝐿 𝐹(𝑥)} = ∅ 

In the lexicographic problem, optimizations achieve an 
arbitrarily small increase in a more important criterion at the 
expense of any losses in other less important criteria. 

The validity of such properties follows from the definition 
of the lexicographically optimal solution of the problem 
𝑍𝐿(𝐹, 𝑋). 
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Property 1. If for an feasible solution 𝑥0 ∈ 𝑋  and 
∀ 𝑥 ∈  𝑋 \ {𝑥0}  of the problem 𝑍𝐿(𝐹, 𝑋)  the inequality 
𝑓1(𝑥) < 𝑓1(𝑥0) holds, then 𝑥0 ∈ 𝐿(𝐹, 𝑋). 

Property 2. If for an feasible solution 𝑥 ∈ 𝑋 of the problem 
𝑍𝐿(𝐹, 𝑋)  ∃𝑥′ ∈ 𝑋\{𝑥}  such that 𝑓1(𝑥′) > 𝑓1(𝑥) , then 
𝑥 ∉  𝐿(𝐹, 𝑋).  

 

III. EXISTENCE OF LEXICOGRAPHICALLY OPTIMAL 

SOLUTIONS 

The solvability of the problem of finding lexicographically 
optimal solutions on a feasible set Х and the structure of the 
set of optimal solutions depend on the properties of the order 
of the preference relation, the structure of the feasible 
domainХ, the nature of its elements, properties of the vector 
function 𝐹(𝑥), etc.  

According to [2], the finiteness of the set X is a sufficient 
condition for the existence of optimal solutions to the 
lexicographic problem optimization. Also, the set 𝐿(𝐹, 𝑋) is 
not empty if the set of vector estimates 𝑌 = {𝐹(𝑥)|𝑥 ∈ 𝑋} is 
bounded and closed. However, in the case of an infinite 
feasible set X, the set of lexicographically optimal solutions 
may be empty. 

It is topical to study the issues of solvability of 
lexicographic vector optimization problems in which the set 
of feasible solutions is not bounded and convex. 

The unboundedness of a convex set Х means that 

0+Х\{0} ≠ ∅  

where 

0+Х = {𝑦 ∈ 𝑅𝑛|∀𝑥 ∈ 𝑋: 𝑥 + 𝑡𝑦 ∈ 𝑋, 𝑡 ≥ 0}  

is the recessive cone of the set Х. 

We will analyze the problem 𝑍𝐿(𝐹, 𝑋)taking into account 
the properties of the recessive cone 0+Х  [4] and the cone 
𝐾𝐿 = {𝑥 ∈ 𝑅𝑛|𝐶𝑥 >𝐿 0}  lexicographically ordering the 
admissible set with respect to the optimization criteria, which 
we will also call the cone of promising [5] lexicographic 
directions of the problem 𝑍𝐿(𝐹, 𝑋), since the transition from 
any point 𝑥1 ∈ 𝑅𝑛  to the point 𝑥2 = 𝑥1 + 𝑦 where 𝑦belongs 
tothe cone 𝐾𝐿 leads to the inequality 𝐶𝑥2 >𝐿 𝐶𝑥1, that is, to 
the lexicographic increase in the values of the vector criterion 
of the problem. 

The cone 𝐾𝐿  that determines the lexicographic order in 

space 𝑅ℓ is a convex cone of directions of lexicographically 
positive vectors and can be represented as a union of disjoint 
sets: 

𝐾𝐿 = 𝐾1 ∪ 𝐾2 ∪. . .∪ 𝐾ℓ, 

where 

𝐾1 = {𝑥 ∈ 𝑅𝑛|𝑐1𝑥 > 0 }, 

𝐾2 = {𝑥 ∈ 𝑅𝑛|  𝑐1𝑥 = 0,  𝑐2𝑥 > 0 } 

 

𝐾ℓ = {𝑥 ∈ 𝑅𝑛|𝑐1𝑥 = 0, 𝑐2𝑥 = 0, . . . , 𝑐ℓ−1𝑥 = 0, 𝑐ℓ𝑥 > 0}. 

For an arbitrary 𝑥 ∈ 𝑋, the statement [2] is true: 

 𝑥 ∈ 𝐿(𝐹, 𝑋) ⇔ (𝑥 + 𝐾𝐿) ∩ 𝑋 = ∅ () 

For the problems of lexicographic optimization, we 
consider the necessary and sufficient conditions for the 
existence of lexicographically optimal solutions, which were 

started in work 2 and continued in 6-9. 

In the case of a convex closed unbounded feasible set 𝑋 of 
the problem 𝑍𝐿(𝐹, 𝑋), the theorem is valid. 

Theorem 1. A necessary condition for the existence of 
lexicographically optimal solutions to the problem 𝑍𝐿(𝐹, 𝑋) is 
the empty intersection of the cone 𝐾𝐿 of promising 
lexicographic directions and the recessive cone 0+Х, that is, 

 𝐾𝐿 ∩ 0+𝑋 = ∅ () 

Proof. Let us suppose by way of contradiction, that the set 
𝐿(𝐹, 𝑋) ≠ ∅, but condition (3) is not satisfied, that is, the 
intersection of the cones 𝐾𝐿 and 0+𝑋 is not empty: 
𝐾𝐿 ∩  0+𝑋 ≠ ∅. Then the following relations are true: 

(𝑥 + 𝐾𝐿) ∩ 𝑋 ⊇ (𝑥 + 𝐾𝐿) ∩ (𝑥 + 0+𝑋) = 

= 𝑥 + (𝐾𝐿 ∩ 0+𝑋) ≠ ∅. Taking into account formula (2), we 
can conclude that the set 𝐿(𝐹, 𝑋) = ∅. But this contradicts the 
condition of the theorem and thereby proves its validity. 

The converse statement of the theorem is generally not 
true. In the monograph [2] an example is given in which 
condition (3) is satisfied for an feasible set 𝑋, but the set of its 
extreme points is unbounded, and as a result, the set 
 𝐿(𝐹, 𝑋) =  ∅. 

The direction of the lexicographically positive vector will 
be called the lexicographically positive direction. 

The theorem is true [2]. 

Theorem 2. Let 𝑉 be a non-empty set of extreme points of 
a convex closed set. 𝑋. If 𝑉 is a bounded set, then the set  𝑋has 
a lexicographic maximum if and only if it is bounded in all 
lexicographically positive directions. 

In our notation, under the conditions of Theorem 2, the set 
𝐿(𝐹, 𝑋) is not empty if and only if condition (3) is satisfied. 

In the case of a convex, unbounded and polyhedral set, the 
corollary to Theorem 2 [2] is true. 

Consequence. A closed convex polyhedral set 𝑋  has a 
lexicographic maximum if and only if it is bounded in all 
lexicographically positive directions. 

Theorem 1 and the corollary to Theorem 2 imply the 
following theorem. 

Theorem 3. Let the feasible set 𝑋 of the problem 𝑍𝐿(𝐹, 𝑋) 
be a closed convex polyhedral set. A necessary and sufficient 
condition for the existence of lexicographically optimal 
solutions to this problem is the fulfillment of equality (3). 

Note that the multifaceted condition of a convex closed 
unbounded set 𝑋 is essential for the statement of the fact that 
condition (3) is a necessary and sufficient condition for the 



existence of lexicographically optimal solutions to the 
problem 𝑍𝐿(𝐹, 𝑋). 

IV. EXISTENCE OF LEXICOGRAPHICALLY OPTIMAL 

SOLUTIONS IN INTEGER OPTIMIZATION PROBLEMS 

Let us now consider the integer problem of lexicographic 
optimization of the following form: 

𝑍𝐿
𝐼 (𝐹, 𝑋):  𝑚𝑎𝑥𝐿{𝐹(𝑥)|𝑥 ∈ 𝑋 ∩ 𝑍𝑛} 

𝑋 = {𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤  𝑏}, 𝑋 ≠ ∅, ,n nZ R 𝑍𝑛 is the set of all 

integer vectors with 𝑅𝑛. 

We denote by  𝑋𝐼 = {𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤ 𝑏}𝐼 the convex hull of 
the integer vectors of the polyhedron set 𝑋. We will call it an 
integer hull 𝑋 . It is obvious that 𝑋𝐼 ⊆ 𝑋.

 
If the set 𝑋  is 

bounded, then the set 𝑋𝐼 is also bounded. 

Theorem 4 [10] is valid. 

Theorem 4. For any rational polyhedral set  𝑋, its integer 
envelope 𝑋𝐼 forms a rational polyhedral set. 

Like linear lexicographic optimization problems, 
lexicographic linear integer optimization problems can have 
an empty feasible set or have an unbounded feasible set. For a 
given polyhedron, it seems difficult to find out whether its 
integer hull 𝑋𝐼 

is empty. However, if the feasible domain of 
the integer lexicographic problem is not empty, then the 
existence of its solutions can be checked by considering the 
linear relaxation of the integer lexicographic problem. 

Statement 1[11]. Let 𝑋 = {𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤ 𝑏} be a rational 
polyhedron whose integer hull is not empty, and let с ∈ 𝑅𝑛 be 
some vector, not necessarily rational. Then the optimum 
𝑚𝑎𝑥{𝑐𝑥|𝑥 ∈ 𝑋}  is bounded if and only if 𝑚𝑎𝑥{𝑐𝑥|𝑥 ∈ 𝑋𝐼} is 
bounded. 

Theorem 5. Let in the problem 𝑍𝐿
𝐼 (𝐹, 𝑋) , where 

𝑋 =  {𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤ 𝑏}  be a rational polyhedral unbounded 
set whose integer hull is nonempty, and let 𝐾𝐿 be a cone of 
lexicographic directions (not necessarily rational). Then the 
problem 𝑍𝐿(𝐹, 𝑋𝐼) has lexicographic optimal solutions if and 
only if the problem 𝑍𝐿(𝐹, 𝑋) has solutions. 

V. CONCLUSION 

The existence of solutions to convex and integer 
lexicographic optimization problems with linear criteria 

functions and an unbounded feasible set have been 
investigated. On the basis of the analysis of the specified 
problems, taking into account the properties of perspective 
lexicographic directed and recessive directed cones, the 
necessary and sufficient conditions for the existence of 
solutions to the investigated problems have been established. 
The obtained conditions can be successfully used in the 
development of algorithms for finding optimal solutions to 
these lexicographic optimization problems. 
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