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Abstract—We study Brownian functionals, the conditional 

mathematical expectation of which with respect to natural 

filtration (the so-called filter) is not stochastically smooth from 

the point of view of their representability as a stochastic Itô 

integral with an explicit form of the integrand. The considered 

class of functionals also includes those that are not smooth in the 

sense of Malliavin, to which both the well-known Clark-Ocone 

formula (1984) and its generalization, the Glonti-Purtukhia 

representation (2017), are inapplicable. 
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I. INTRODUCTION 

The problem of nonlinear filtering is as follows: we are 
interested in the estimation of a signal process 𝜉𝑡  which 
cannot be observed directly but we have an observation 
process 𝜂𝑡  which is related to 𝜉𝑡 . The best estimate in the 
mean square sense of 𝑓(𝜉𝑡  ) based on the natural 𝜎-algebra of 

observations ℑ𝑡
𝜂

= 𝜎{𝜂𝑠: 0 ≤ 𝑠 ≤ 𝑡}  is given by the 

conditional mathematical expectation 𝐸[𝑓(𝜉𝑡  )|ℑ𝑡
𝜂

] . In the 

General case this estimate depends nonlinearly on 
observations and is called a nonlinear filter. A practical and 
mathematically more appealing method for solving the 
filtering problem is to derive a stochastic differential equation 
for the filter and use Ito's stochastic calculus. 

If 𝜉𝑡 is the solution of a stochastic differential equation and 
𝑓 is a 𝐶2-function, then according to the Ito’s formula 𝑓(𝜉𝑡  ) 
is a semimartingale and hence, under appropriate conditions, 

𝐸[𝑓(𝜉𝑡  )|ℑ𝑡
𝜂

]  is a right-continuous semimartingale with 

respect to 𝜎-algebras ℑ𝑡
𝜂
. Therefore, if every right-continuous 

𝐿2-martingale can be represented as a stochastic integral with 
respect to a Wiener process, then we can derive a stochastic 

differential equation for 𝐸[𝑓(𝜉𝑡  )|ℑ𝑡
𝜂

] . As is known, the 

central results of nonlinear filtering theory -- the derivation of 
the stochastic equations satisfied by the optimal nonlinear 
filter. Thus, the question of the stochastic integral 
representation of martingales is very important for filtering 
problems. 

The stochastic integral representation theorem, also 
known as the martingale representation theorem, states that 
any square integrable Brownian functional is represented as a 
stochastic integral with respect to a Brownian Motion. The 
first proof of the martingale representation theorem was 
implicitly provided by Ito ([1]) himself. Indeed, here it is 
proved that any square integrable Wiener functional can be 

expressed as a series of multiple stochastic integrals, further it 
is shown that a multiple integral can be expressed as an 
iterated stochastic integral, and, as a result, a stochastic 
integral representation can be obtained from here. 

Many years later, Dellacherie ([3]) gave a simple new 
proof of Ito's theorem using Hilbert space techniques. Many 
other  articles were written afterward on this problem and its 
applications but one of the pioneer work on explicit 
descriptions of the integrand is certainly the one by Clark 
([2]). 

On the other hand, in the 80s of the last century (Harrison 
and Pliska [6]), it became clear that martingale representation 
theorems (along with Girsanov's absolutely continuous 
change of measure theorem) play an important role in modern 
financial mathematics. Therefore, the following question 

naturally arises: can any ℑ𝑡
𝜂

-martingale be represented as a 

stochastic integral? It turned out that we have a positive 

answer to this question (Clark ([2])) when ℑ𝑡
𝜂

= ℑ𝑡
𝑤 (where 

𝑤𝑡  is a Wiener process), but in general this is not so.  This is 
shown in the example of Kallianpur ([5]) (to whom M. Ior 
described it, and the latter, in turn, attributes the example to H. 
Kunita): let (𝑤𝑡

1, 𝑤𝑡
2) be a Wiener process in 𝑅2, and let 

𝑀𝑡 = ∫ 𝑤𝑠
1d𝑤𝑠.

2
𝑡

0

 

It's obvious that  

𝑁𝑡 = (𝑤𝑡
1)2 − 1 = 2 ∫ 𝑤𝑠

1d𝑤𝑠
1

𝑡

0

 

is a ℑ𝑡
𝑀 - martingale, but it cannot be represented as a 

stochastic integral with respect to 𝑀𝑡. 

After Clark ([2]) obtained the formula for the stochastic 
integral representation for Brownian Motion functionals, 
many authors tried to explicitly find the integrand. The works 
of Haussmann ([4]), Ocone ([7]), Ocone and Karatzas (1991), 
Karatzas, Ocone and Li (1991), Shyriaev and Yor (2003), 
Graversen, Shyriaev and Yor (2006) and Renaud and 
Remillard (2007) are especially important in this direction. 

Hence, taking into account the needs of modern financial 
mathematics, it is not enough to know only the existence of an 
integral representation, it is necessary to be able to find the 
explicit form of the integrand of the integral representation. It 
is known that for stochastically smooth functionals, the 
integrand is calculated by Ocone's formula ([7]), which was 
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later generalized by Glonti and Purtukhia ([12]), when only 
the filter of the functional is stochastically smooth. Here we 
study functionals whose filter is no longer smooth and propose 
a method for finding the integrand. 

We study the question of representing of Brownian 
functionals as a stochastic Itô integral with an explicit form of 
the integrand. The considered class of functionals also 
includes functionals that are not smooth in the sense of 
Malliavin, to which both the well-known Clark-Ocone 
formula ([7]) and its generalization, the Glonti-Purtukhia 
formula ([12]), are inapplicable. 

 

II.  AUXILIARY CONCEPTS AND RESULTS 

Let a Brownian Motion𝐵 = 𝐵𝑡 , 𝑡 ∈ [0, 𝑇], be given on a 
probability space (Ω, ℑ, 𝑃), and let ℑ𝑡

𝐵 = 𝜎{𝐵𝑠: 0 ≤ 𝑠 ≤ 𝑡}.  
Let 𝐶𝑝

∞(𝑅𝑛) be the set of all infinitely differentiable functions 

𝑓: 𝑅𝑛 → 𝑅   such that 𝑓  and all its partial derivatives have 
polynomial growth. Denote by 𝑆𝑚  the class of smooth 
random variables 𝐹 of the form 

𝐹 = 𝑓(𝐵𝑡1
, 𝐵𝑡2

, , … , 𝐵𝑡𝑛
) 𝑓 ∈ 𝐶𝑝

∞(𝑅𝑛) 𝑡𝑖 ∈ [0, 𝑇]. 

It is known that 𝑆𝑚 is dense in 𝐿2(Ω). 

Definition 1. The stochastic derivative (derivative in the 
Malliavin sense) of a smooth random variable 𝐹 is defined as 
a random process 𝐷𝑡𝐹  defined by the relation (Nualart and 
Pardoux ([8])) 

𝐷𝑡𝐹 = ∑
𝜕

𝜕𝑥𝑖

𝑓(𝐵𝑡1
, 𝐵𝑡2

, , … , 𝐵𝑡𝑛
)𝐼[0,𝑡𝑖](𝑡)

𝑛

𝑖=1

. 

𝐷  is closable as an operator from 𝐿2(𝛺)  to 

𝐿2(𝛺, 𝐿2([0, 𝑇])). Denote its domain of definition by 𝐷1,2. 

This means that 𝐷1,2 is equal to the closure of the class of 

smooth random variables in the norm 

||𝐹||1,2 = {𝐸[𝐹2] + 𝐸[||𝐷𝐹||𝐿2([0,𝑇])
2 ]}1/2. 

Theorem 1. (Clark-Ocone's representation formula, 
Ocone ([7]) If 𝐹  is differentiable in the sense of Malliavin, 
𝐹 ∈ 𝐷1,2, then the following integral representation holds 

𝐹 = 𝐸[𝐹] + ∫ 𝐸[𝐷𝑡𝐹|ℑ𝑡
𝐵]𝑑𝐵𝑡

𝑇

0
,   (𝑃−)      () 

Shiryaev and Yor (2003) and Graversen, Shiryaev and Yor 
(2006) proposed another method for finding the integrand 
based on the Itô formula and Levy's theorem for the Levy 
martingale 𝑀𝑡 = 𝐸[𝐹|ℑ𝑡

𝐵]  associated with the considered 
functional 𝐹  (as 𝐹  they considered the so-called "maximal" 
type functionals of Brownian Motion). Later, using the 
Clarke-Ocone formula, Renaud and Remillard (2007) 
established an explicit martingale representation for Brownian 
functionals, which also depend on the trajectory (in particular, 
here 𝐹  is a continuously differentiable function of three 
smooth quantities: from the Brownian Motion with drift and 
processes of its maximum and minimum).  

It is clear that the class of functionals to which the Clark-
Ocone formula can be applied is limited by the condition that 

they must be Malliavin differentiable. We study questions of 
the stochastic integral representation of stochastically non-
smooth functionals. Glonti, Jaoshvili and Purtukhia ([10], 
[11]) proposed a method for obtaining an integral 
representation for a non-smooth Brownian functionals of a 
special form using the Trotter-Meyer theorem, which 
establishes a connection between the predictable quadratic 
characteristic of a semimartingale and its local time. 

Further, it turned out that the requirement for the smooth-
ness of a functional can be weakened by the requirement for 
the smoothness of only its conditional mathematical 
expectation. It is known that if a random variable is stocha-
stically differentiable in the sense of Malliavin, then its 
conditional mathematical expectation is also differentiable. 

Proposition 1. (Nualart ([9]), Proposition 1.2.8) If 𝐹 ∈
𝐷1,2, then 𝐸(𝐹|ℑ𝑠

𝐵) ∈ 𝐷1,2 and  

𝐷𝑡[𝐸(𝐹|ℑ𝑠
𝐵)] = 𝐸(𝐷𝑡𝐹|ℑ𝑠

𝐵)𝐼[0,𝑠](𝑡). 

On the other hand, the conditional mathematical 
expectation may be smooth even if the random variable is not 
stochastically smooth. For example, it is known that 

𝐸[𝐼{𝐵𝑇≤𝑐}|ℑ𝑡
𝐵] = Φ (

𝑐 − 𝐵𝑡

√𝑇 − 𝑡
) ∈ 𝐷1,2, 

where 𝑐 is some real constant and Φ is the standard normal 
distribution function. 

Remark 1. Here we have used the following statement 
from Nualart ([9], Proposition 1.2.6): The event indicator  𝐼𝐴 
is Malliavin differentiable if and only if the probability 𝑃(𝐴) 
equals zero or one. 

Glonti and Purtukhia ([12]) generalized the Clark-Ocone 
formula to the case when the functional is not stochastically 
smooth, but its conditional mathematical expectation is 
stochastically differentiable, and proposed a method for 
finding the integrand. 

Theorem 2. (Glonti-Purtukhia formula, ([12])) Assume 
that 𝐺𝑡 = 𝐸[𝐹|ℑ𝑡

𝐵]   is a Malliavin differentiable functional 
(𝐺𝑡(∙) ∈ 𝐷1,2) for almost all 𝑡 ∈ [0, 𝑇). Then the following 

stochastic integral representation is valid: 

𝐺𝑇 = 𝐹 = 𝐸[𝐹] + ∫ 𝜈𝑢𝑑𝐵𝑢
𝑇

0
   (𝑃−)    () 

where 

𝜈𝑢 = lim
𝑡↑𝑇

𝐸[𝐷𝑢𝐺𝑡|ℑ𝑢
𝐵]  𝐿2([0, 𝑇] × Ω) 

Remark 2. It should be noted that the result of the above 
theorem can also be useful for smooth functionals (see 
Proposition 2 below). 

Proposition 2. The smooth Brownian functional 𝐹 =
𝐵𝑇

+ ≔ max {0, 𝐵𝑇}  have the following stochastic integral 
representation 

𝐵𝑇
+ = √

𝑇

2𝜋
+ ∫ Φ (

𝐵𝑠

√𝑇−𝑠
) 𝑑𝐵𝑠

𝑇

0
,    (𝑃-a.s.). 

Proof. It is easy to see that 



𝐸[𝐵𝑇
+] = √

𝑇

2𝜋
. 

Further, using the Glonti-Purtukhia representation (2), we 
have 

𝐺𝑡 = 𝐸[𝐵𝑇
+|ℑ𝑡

𝐵] = 𝐸[𝐵𝑇𝐼{𝐵𝑇>0}|ℑ𝑡
𝐵] = 

=
1

√2𝜋(𝑇 − 𝑡)
∫ 𝑥 ∙ exp {−

(𝑥 − 𝐵𝑡)2

2(𝑇 − 𝑡)
} 𝑑𝑥

∞

0

. 

Hence, due to the rule of stochastic differentiation and 
the standard integration technique, we obtain 

𝐷𝑠𝐺𝑡 = 𝐼[0,𝑡](𝑠)
1

√2𝜋(𝑇 − 𝑡)
× 

× ∫
𝑥(𝑥 − 𝐵𝑡)

𝑇 − 𝑡
∙ exp {−

(𝑥 − 𝐵𝑡)2

2(𝑇 − 𝑡)
} 𝑑𝑥

∞

0

= 

= 𝐼[0,𝑡](𝑠)
1

√2𝜋(𝑇 − 𝑡)
× 

× ∫ 𝑥(𝑥√𝑇 − 𝑡 + 𝐵𝑡)exp {−
𝑥2

2
} 𝑑𝑥

∞

−
𝐵𝑡

√𝑇−𝑡
⁄

= 

= 𝐼[0,𝑡](𝑠)
1

√2𝜋(𝑇 − 𝑡)
× 

× [√𝑇 − 𝑡 ∫ 𝑥𝑑 (exp {−
𝑥2

2
})

∞

−
𝐵𝑡

√𝑇−𝑡
⁄

+

𝐵𝑡 ∫ 𝑑 (exp {−
𝑥2

2
})

∞

−
𝐵𝑡

√𝑇−𝑡
⁄

]= 

= 𝐼[0,𝑡](𝑠)Φ (
𝐵𝑡

√𝑇−𝑡
) 

Therefore 

𝐸[𝐷𝑠𝐺𝑡|ℑ𝑠
𝐵] = 𝐼[0,𝑡](𝑠)

1

√2𝜋(𝑡 − 𝑠)
× 

× ∫ Φ (
𝑥

√𝑇 − 𝑡
) ∙ exp {−

(𝑥 − 𝐵𝑠)2

2(𝑡 − 𝑠)
} 𝑑𝑥

∞

−∞

. 

Now, using the relation 

lim
𝑡→𝑇

Φ (
𝑥

√𝑇 − 𝑡
) = {

0,    𝑥 < 0;
1,    𝑥 > 0

 

it is easy to check that 

lim
𝑡→𝑇

𝐸[𝐷𝑠𝐺𝑡|ℑ𝑠
𝐵] = 𝐼[0,𝑇](𝑠)

1

√2𝜋(𝑇 − 𝑠)
× 

× ∫ lim
𝑡→𝑇

[Φ (
𝑥 + 𝐵𝑠

√𝑇 − 𝑡
) ∙ exp {−

𝑥2

2(𝑇 − 𝑠)
}] 𝑑𝑥

∞

−∞

= 

= 𝐼[0,𝑇](𝑠)
1

√2𝜋(𝑇 − 𝑠)
∫ exp {−

𝑥2

2(𝑇 − 𝑠)
} 𝑑𝑥

∞

−𝐵𝑠

= 

= 𝐼[0,𝑇](𝑠) [1 − Φ (−
𝐵𝑠

√𝑇 − 𝑠
)] = 𝐼[0,𝑇](𝑠)Φ (

𝐵𝑠

√𝑇 − 𝑠
), 

which, on the basis of Theorem 2, together with the above 
relations, completes the proof of the proposition. 

  

III. MAIN RESULTS  

Here we consider one class of Brownian functionals, 
which includes non-smooth functionals (therefore, it is 
impossible to use the well-known Clark-Ocone formula (1)), 
depending on the trajectory, and we propose a method for 
obtaining a constructive stochastic integral representation. In 
addition, the class under consideration also includes 
functionals for which even the conditional mathematical 
expectation is not stochastically smooth and, therefore, neither 
the generalization of the Clark-Ocone formula (2) is 
applicable to them. 

In particular, we study the functional of integral type 

∫ ℎ𝑠(𝜔)𝑑𝑠
𝑇

0

, 

where ℎ𝑠(𝜔) ∉ 𝐷1,2 but 𝐸[ℎ𝑠(𝜔)|ℑ𝑡
𝐵] ∈ 𝐷1,2. 

If ℎ𝑠(𝜔) is not differentiable in the Malliavin sense, then 

the Lebesgue averaging (with respect to 𝑑𝑠) is in general not 

differentiable in the Malliavin sense.  
On the other hand, in this case, even the conditional 

mathematical expectation is not smooth, since we have: 

𝐸 [∫ ℎ𝑠(𝜔)𝑑𝑠
𝑇

0

|ℑ𝑡
𝐵] = ∫ ℎ𝑠(𝜔)𝑑𝑠

𝑡

0

+ 𝐸 [∫ ℎ𝑠(𝜔)𝑑𝑠
𝑇

𝑡

|ℑ𝑡
𝐵], 

where the first term is not differentiable, but the second term 

is differentiable in the sense of Malliavin (it is known that if 

𝐺𝑠(∙) ∈ 𝐷1,2 for almost all s and 𝐺𝑠(𝜔) is Lebesgue integrable 

for a.e. 𝜔, then 

∫ 𝐺𝑠(𝜔)𝑑𝑠
𝑇

𝑡
∈ 𝐷1,2) 

Theorem 3. If ℎ(𝑥) is a bounded measurable function on 

𝑅 , then the function 𝑉(𝑡, 𝑥) = 𝐸[∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

𝑡
|𝐵𝑡 = 𝑥]  

satisfies the requirements of the Ito formula and the following 
stochastic integral representation is valid 

∫ ℎ(𝐵𝑡)𝑑𝑡
𝑇

0
= ∫ 𝐸[ℎ(𝐵𝑡)}𝑑𝑡 + ∫

𝜕

𝜕𝑥
𝑉(𝑡, 𝐵𝑡)𝑑𝐵𝑡

𝑇

0

𝑇

0
, (𝑃-a.s.), 

Proof. It is well known that for all measurable bounded 
functions 𝑔 and 𝑡 < 𝑠 we have 

𝐸[𝑔(𝐵𝑠)|ℑ𝑡
𝐵] = ∫ 𝑔(𝑦)𝑝(𝑡, 𝑠, 𝐵𝑡 , 𝑑𝑦)

∞

−∞
 



where for any Borel subset 𝐴  of 𝑅 = (−∞, ∞): 
𝑝(𝑡, 𝑠, 𝐵𝑡 , 𝐴) = 𝑃[𝐵𝑠 ∈ 𝐴|ℑ𝑡

𝐵]  the transition probability of 

Brownian motion and 

𝑝(𝑡, 𝑠, 𝑥, 𝐴) =
1

√2𝜋(𝑠 − 𝑡)
∫ exp {−

(𝑥 − 𝑦)2

2(𝑠 − 𝑡)
} 𝑑𝑦

𝐴

. 

Therefore, using the well-known properties of conditional 
mathematical expectation and Brownian motion, we can write 

𝑉(𝑡, 𝑥) = 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

𝑡
|𝐵𝑡] |𝐵𝑡=𝑥 =   

= {∫ 𝐸[ℎ(𝐵𝑠)|𝐵𝑡]𝑑𝑠
𝑇

𝑡
} |𝐵𝑡=𝑥 = {∫ 𝐸[ℎ(𝐵𝑠)|ℑ𝑡

𝐵]𝑑𝑠
𝑇

𝑡
} |𝐵𝑡=𝑥= 

= {∫ [∫ ℎ(𝑦)
1

√2𝜋(𝑠−𝑡)
exp {−

(𝐵𝑡−𝑦)2

2(𝑠−𝑡)
} 𝑑𝑦

∞

−∞
 ] 𝑑𝑠

𝑇

𝑡
} |𝐵𝑡=𝑥= 

= ∫ {
1

√2𝜋(𝑠 − 𝑡)
[ ∫ ℎ(𝑦) exp {−

(𝑥 − 𝑦)2

2(𝑠 − 𝑡)
}

∞

−∞

] 𝑑𝑦} 𝑑𝑠
𝑇

𝑡

. 

The last relation shows that, on the one hand, 𝑉(𝑡, 𝑥) is an 
integral with variable boundary with respect to 𝑡, and on the 
other hand, with respect to 𝑥, it is an integral that depends on 
a parameter. Therefore, it is easy to verify that in our case 
𝑉(𝑡, 𝑥) is continuously differentiable with respect to 𝑡  and 
twice continuously differentiable with respect to 𝑥 , that is, 
𝑉(𝑡, 𝑥)satisfies the conditions of the Itô's formula. 

 According to Ito's formula, we have 

𝑉(𝑡, 𝐵𝑡) = 𝑉(0, 𝐵0) + ∫ [
𝜕

𝜕𝑠
𝑉(𝑠, 𝐵𝑠) +

1

2

𝜕2

𝜕𝑥2 𝑉(𝑠, 𝐵𝑠)] 𝑑𝑠
𝑡

0
+ 

                 + ∫
𝜕

𝜕𝑥
𝑉(𝑠, 𝐵𝑠)𝑑𝐵𝑠

𝑡

0
       (𝑃−)             () 

On the other hand, due to the Markov property of the 
Brownian Motion 

𝑉(𝑡, 𝐵𝑡) = 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

𝑡
|𝐵𝑡 = 𝑥] |𝑥=𝐵𝑡

= 

= 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

𝑡
|𝐵𝑡] = 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠

𝑇

𝑡
|ℑ𝑡

𝐵],   (𝑃-a.s.).  

Therefore, under the conditions of the theorem, the process 

∫ ℎ(𝐵𝑠)𝑑𝑠
𝑡

0
+ 𝑉(𝑡, 𝐵𝑡) =  𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠

𝑡

0
|ℑ𝑡

𝐵]+ 

+𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

𝑡
|ℑ𝑡

𝐵] = 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

0
|ℑ𝑡

𝐵] ≔ 𝑀𝑡 

is a martingale.  
Further, according to Levy's theorem, it is obvious that 𝑀𝑡 

is a continuous martingale. On the other hand, a continuous 
martingale of bounded variation starting from 0 is identically 
equal to 0. Therefore, in equality (3), the term of bounded 

variation in total with an additional term (∫ ℎ(𝐵𝑠)𝑑𝑠
𝑡

0
) of 

bounded variation of martingale 𝑀 is equal to zero. 

Hence, taking into account equality 

𝑀0 = 𝑉(0, 𝐵0) = 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

0
|𝐵0]=  

    = 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

0
|ℑ0

𝐵] = 𝐸 [∫ ℎ(𝐵𝑠)𝑑𝑠
𝑇

0
],    (𝑃-a.s.), 

we easily complete the proof of the theorem.              
Let ℎ𝑠(𝜔) be an integrable process adapted to the flow of 

𝜎-algebrasℑ𝑠
𝐵. Denote 

𝐹(𝑡, 𝑇) = ∫ ℎ𝑠(𝜔)𝑑𝑠
𝑇

𝑡

 

and 

𝐹 = 𝐹(0, 𝑇) = ∫ ℎ𝑠(𝜔)𝑑𝑠
𝑇

0
 

Theorem 4. Suppose that 𝐹(𝑡, 𝑇) admits a decomposition 
𝐹(𝑡, 𝑇) = 𝐹1(𝑡, 𝑇) + 𝐹2(𝑡, 𝑇), where 𝐹1(𝑡, 𝑇) is a continuous 
process of finite variation, adapted to the flow of 𝜎 -algebras 
ℑ𝑡

𝐵 with 𝐹1(0, 𝑇) = 0 (if such a decomposition does not exist, 
then we assume that 𝐹1(𝑡, 𝑇) ≡ 0). If the function 𝑉(𝑡, 𝑥) =
𝐸[𝐹2(𝑡, 𝑇)|𝐵𝑡 = 𝑥] satisfies the requirements of the classical 
Itô formula (i.e. 𝑉(∙,∙) ∈ 𝐶1,2([0, 𝑇 × 𝑅])), then the following 
stochastic integral representation is fulfilled 

 𝐹 = 𝐸[𝐹] + ∫
𝜕

𝜕𝑥
𝑉(𝑡, 𝐵𝑡)𝑑𝐵𝑡

𝑇

0
    (𝑃−)        () 

Remark 3. It should be noted that the result of the above 
theorem is especially interesting for non-smooth ℎ𝑠(𝜔) , 
although it is also useful in the case of smooth ℎ𝑠(𝜔).  

Theorem 5. Let ℎ𝑠(𝜔) ∈ 𝐷1,2 for almost all 𝑠. Then the 

Clark-Ocone representation (1) for the functional 𝐹 =

∫ ℎ𝑠(𝜔)𝑑𝑠
𝑇

0
 follows from the above representation (4). 

Remark 4. Note that an approach similar to our theorem 
can also be used for functionals depending on the last moment 
of time. There is the following statement.  

Proposition 3.  If 𝐹 = 𝐼{𝐵𝑇≤𝑐}, then the function 𝑉(𝑡, 𝑥) =
𝐸[𝐹|𝐵𝑡 = 𝑥] satisfies the requirements of the Ito's formula 
and the following stochastic integral representation is valid 

𝐼{𝐵𝑇≤𝑐} = Φ (
𝑐

√𝑇
) + ∫

1

√𝑇−𝑡
φ (

𝑐−𝐵𝑡

√𝑇−𝑡
) 𝑑𝐵𝑡

𝑇

0
,  (𝑃-a.s.), 

where φ is the density of the standard normal distribution. 

Now consider the stochastically non-smooth integral 
functional  

                       𝐹 = ∫ 𝐼{𝐵𝑡≤𝑐}𝑑𝑡
𝑇

0
                              () 

Proposition 4.  The functional 𝐹  from (5) has the 
following stochastic integral representation  

𝐹 = ∫ Φ (
𝑐

√𝑡
) 𝑑𝑡 + ∫ Ψ(𝑐, 𝑡, 𝐵𝑡  )𝑑𝐵𝑡

𝑇

0

𝑇

0

, 

where  

Ψ(𝑐, 𝑡, 𝑥 ) = −2√𝑇 − 𝑡φ (
𝑐 − 𝑥

√𝑇 − 𝑡
) + 



+(𝑐 − 𝑥) [2𝐼{𝑥≤𝑐} − 1 − 𝑒𝑟𝑓 (
𝑐 − 𝑥

√2(𝑇 − 𝑡)
)] 

and 

erf (𝑥) =
2

√𝜋
∫ exp {−𝑢2}𝑑𝑢

𝑥

0
 

Proposition 5.  If 𝑓(∙,∙): [0, 𝑇] × 𝑅 → 𝑅 is a measurable 
bounded function and ℎ𝑠(𝜔) = 𝑓(𝑠, 𝐵𝑠(𝜔))  , then the 
function 𝑉(𝑡, 𝑥) = 𝐸[𝐹(𝑡, 𝑇)|𝐵𝑡 = 𝑥]  satisfies the require-
ments of the Ito formula.  
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