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Abstract—We study Brownian functionals, the conditional
mathematical expectation of which with respect to natural
filtration (the so-called filter) is not stochastically smooth from
the point of view of their representability as a stochastic 1t6
integral with an explicit form of the integrand. The considered
class of functionals also includes those that are not smooth in the
sense of Malliavin, to which both the well-known Clark-Ocone
formula (1984) and its generalization, the Glonti-Purtukhia
representation (2017), are inapplicable.
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I. INTRODUCTION

The problem of nonlinear filtering is as follows: we are
interested in the estimation of a signal process &, which
cannot be observed directly but we have an observation
process n, which is related to &.. The best estimate in the
mean square sense of f (&, ) based on the natural o-algebra of
observations 3! = o{ns:0<s <t} is given by the
conditional mathematical expectation E[f (¢, )|S]]. In the
General case this estimate depends nonlinearly on
observations and is called a nonlinear filter. A practical and
mathematically more appealing method for solving the
filtering problem is to derive a stochastic differential equation
for the filter and use Ito's stochastic calculus.

If &, is the solution of a stochastic differential equation and
f is a C%-function, then according to the Ito’s formula £ (&, )
is a semimartingale and hence, under appropriate conditions,
E[f(¢)|3]] is a right-continuous semimartingale with
respect to o-algebras . Therefore, if every right-continuous
L,-martingale can be represented as a stochastic integral with
respect to a Wiener process, then we can derive a stochastic
differential equation for E[f (& )|37]. As is known, the
central results of nonlinear filtering theory -- the derivation of
the stochastic equations satisfied by the optimal nonlinear
filter. Thus, the question of the stochastic integral
representation of martingales is very important for filtering
problems.

The stochastic integral representation theorem, also
known as the martingale representation theorem, states that
any square integrable Brownian functional is represented as a
stochastic integral with respect to a Brownian Motion. The
first proof of the martingale representation theorem was
implicitly provided by Ito ([1]) himself. Indeed, here it is
proved that any square integrable Wiener functional can be
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expressed as a series of multiple stochastic integrals, further it
is shown that a multiple integral can be expressed as an
iterated stochastic integral, and, as a result, a stochastic
integral representation can be obtained from here.

Many vyears later, Dellacherie ([3]) gave a simple new
proof of Ito's theorem using Hilbert space techniques. Many
other articles were written afterward on this problem and its
applications but one of the pioneer work on explicit
descriptions of the integrand is certainly the one by Clark

([2D).

On the other hand, in the 80s of the last century (Harrison
and Pliska [6]), it became clear that martingale representation
theorems (along with Girsanov's absolutely continuous
change of measure theorem) play an important role in modern
financial mathematics. Therefore, the following question
naturally arises: can any 7 -martingale be represented as a
stochastic integral? It turned out that we have a positive
answer to this question (Clark ([2])) when 3] = 3% (where
w, is a Wiener process), but in general this is not so. This is
shown in the example of Kallianpur ([5]) (to whom M. lor
described it, and the latter, in turn, attributes the example to H.
Kunita): let (w2, w?) be a Wiener process in R?, and let

t
M, = j wldw?
0
It's obvious that
t
N,=Wwd)?—-1= ZJ- wldwl
0

is a I - martingale, but it cannot be represented as a
stochastic integral with respect to M,.

After Clark ([2]) obtained the formula for the stochastic
integral representation for Brownian Motion functionals,
many authors tried to explicitly find the integrand. The works
of Haussmann ([4]), Ocone ([7]), Ocone and Karatzas (1991),
Karatzas, Ocone and Li (1991), Shyriaev and Yor (2003),
Graversen, Shyriaev and Yor (2006) and Renaud and
Remillard (2007) are especially important in this direction.

Hence, taking into account the needs of modern financial
mathematics, it is not enough to know only the existence of an
integral representation, it is necessary to be able to find the
explicit form of the integrand of the integral representation. It
is known that for stochastically smooth functionals, the
integrand is calculated by Ocone's formula ([7]), which was
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later generalized by Glonti and Purtukhia ([12]), when only
the filter of the functional is stochastically smooth. Here we
study functionals whose filter is no longer smooth and propose
a method for finding the integrand.

We study the question of representing of Brownian
functionals as a stochastic It6 integral with an explicit form of
the integrand. The considered class of functionals also
includes functionals that are not smooth in the sense of
Malliavin, to which both the well-known Clark-Ocone
formula ([7]) and its generalization, the Glonti-Purtukhia
formula ([12]), are inapplicable.

Il. AUXILIARY CONCEPTS AND RESULTS

Let a Brownian MotionB = B,, t € [0,T], be given on a
probability space (€, 3, P), and let I = ¢{B,:0 < s < t}.
Let C,°(R™) be the set of all infinitely differentiable functions
f:R™ = R such that f and all its partial derivatives have
polynomial growth. Denote by Sm the class of smooth
random variables F of the form

F = f(By,, Bty Be), f € CX(R™), t; € [0,T].

It is known that Sm is dense in L, ().

Definition 1. The stochastic derivative (derivative in the
Malliavin sense) of a smooth random variable F is defined as
a random process D.F defined by the relation (Nualart and
Pardoux ([8]))

n
)
D,F = Z ——F(Bey By e Beiosg (0
i=1 xi

D is closable as an operator from L,(Q2) to
L, (!), L, ([0, T])). Denote its domain of definition by D, ,.

This means that D, , is equal to the closure of the class of
smooth random variables in the norm

[IFll1, = {E[F?] + E[|IDF ||}, orp]3"/%

Theorem 1. (Clark-Ocone's representation formula,
Ocone ([7]) If F is differentiable in the sense of Malliavin,
F € D, ,, then the following integral representation holds

F = E[F] + [| E[D,FI3?]dB,, (P-o.c). (1)

Shiryaev and Yor (2003) and Graversen, Shiryaev and Yor
(2006) proposed another method for finding the integrand
based on the It6 formula and Levy's theorem for the Levy
martingale M, = E[F|3%] associated with the considered
functional F (as F they considered the so-called "maximal”
type functionals of Brownian Motion). Later, using the
Clarke-Ocone formula, Renaud and Remillard (2007)
established an explicit martingale representation for Brownian
functionals, which also depend on the trajectory (in particular,
here F is a continuously differentiable function of three
smooth quantities: from the Brownian Motion with drift and
processes of its maximum and minimum).

It is clear that the class of functionals to which the Clark-
Ocone formula can be applied is limited by the condition that

they must be Malliavin differentiable. We study questions of
the stochastic integral representation of stochastically non-
smooth functionals. Glonti, Jaoshvili and Purtukhia ([10],
[11]) proposed a method for obtaining an integral
representation for a non-smooth Brownian functionals of a
special form using the Trotter-Meyer theorem, which
establishes a connection between the predictable quadratic
characteristic of a semimartingale and its local time.

Further, it turned out that the requirement for the smooth-
ness of a functional can be weakened by the requirement for
the smoothness of only its conditional mathematical
expectation. It is known that if a random variable is stocha-
stically differentiable in the sense of Malliavin, then its
conditional mathematical expectation is also differentiable.

Proposition 1. (Nualart ([9]), Proposition 1.2.8) If F €
Dy ,, then E(F|3%) € D, , and
D [E(FISD] = E(DFII$) 0,5 (D).

On the other hand, the conditional mathematical
expectation may be smooth even if the random variable is not
stochastically smooth. For example, it is known that

-B
E[I{BTSC}|S?] = (;) € Dy ,,
VT —t '

where ¢ is some real constant and @ is the standard normal
distribution function.

Remark 1. Here we have used the following statement
from Nualart ([9], Proposition 1.2.6): The event indicator I,
is Malliavin differentiable if and only if the probability P(A4)
equals zero or one.

Glonti and Purtukhia ([12]) generalized the Clark-Ocone
formula to the case when the functional is not stochastically
smooth, but its conditional mathematical expectation is
stochastically differentiable, and proposed a method for
finding the integrand.

Theorem 2. (Glonti-Purtukhia formula, ([12])) Assume
that G, = E[F|32] is a Malliavin differentiable functional
(G.(:) € D, ,) for almost all t € [0,T). Then the following
stochastic integral representation is valid:

Gr =F = E[F]+ [, v,dB,, (P-0.0). (2)
where
vy = lim E[D,G¢|35] w L,([0,T] X Q).

Remark 2. It should be noted that the result of the above
theorem can also be useful for smooth functionals (see
Proposition 2 below).

Proposition 2. The smooth Brownian functional F =
B# = max {0, B;} have the following stochastic integral
representation

+ - | T (T Bs -
B} = \/;+ X ¢(m) dB,, (P-as.).

Proof. It is easy to see that




T

Further, using the Glonti-Purtukhia representation (2), we
have

Gy = E[BHS?] = E[BTI{BT>0}|S?] =

L [ [LGmBY
] * o Caa)e

Hence, due to the rule of stochastic differentiation and
the standard integration technique, we obtain

1
DsGy = Ijo 41 () —m=—=—= X

VJ2r(T —1t)

x(x — By) (x — By)? _
Xf T—t 'eXp{_Z(T—t)}dx_
0

1
=l (8) ==X

V2 (T —t)

[ee)

xZ
X f x(xVT —t + B;)exp {— 7} dx =
_Bt
VTt

1
= Iy (8) ==X

V2 (T —t)
x [V T—t f_o?gt =
55y _aew (-5

= I ()P (75).

Therefore

~B 1
E[DsG|35] = Ijo,01(8) T m=——==< X

V21 (t —5)

X f(b(\/%)-exp {—%}dm

—00

Now, using the relation
, X 0, x<O0;
P_)mTCD( T—t) _{1, x>0
it is easy to check that

ImE[DsGel 351 = Ijori(5)

1
V2r(T —5) 8

S

1 x?2
= Ijor1(s) 727r(T = }[ exp {— 72(7, — s)} dx =

\/%)] =1l ()P (\/%).

which, on the basis of Theorem 2, together with the above
relations, completes the proof of the proposition.

= Iiom(5) [1 —® (—

I1l. MAIN RESULTS

Here we consider one class of Brownian functionals,
which includes non-smooth functionals (therefore, it is
impossible to use the well-known Clark-Ocone formula (1)),
depending on the trajectory, and we propose a method for
obtaining a constructive stochastic integral representation. In
addition, the class under consideration also includes
functionals for which even the conditional mathematical
expectation is not stochastically smooth and, therefore, neither
the generalization of the Clark-Ocone formula (2) is
applicable to them.

In particular, we study the functional of integral type

fOThS (w)ds,

where hy(w) € D, , but E[hy(w)|IZ] € Dy 5.

If hs (w) is not differentiable in the Malliavin sense, then
the Lebesgue averaging (with respect to ds) is in general not
differentiable in the Malliavin sense.

On the other hand, in this case, even the conditional
mathematical expectation is not smooth, since we have:

T t T
E Uo hy(w)ds |Sf] = J; hy(w)ds + E U; hg(w)ds |Sf],

where the first term is not differentiable, but the second term
is differentiable in the sense of Malliavin (it is known that if
Gs(*) € Dy, foralmostall s and G;(w) is Lebesgue integrable
for a.e. w, then

J] Gy(w)ds € Dy ).

Theorem 3. If h(x) is a bounded measurable function on
R, then the function V(t,x) = E[f, h(B))ds |B, = x]
satisfies the requirements of the Ito formula and the following
stochastic integral representation is valid

a
Jy h(Bydt = [ E[h(B)Ydt + f) =V (t, B,)dB, (P-as),
Proof. It is well known that for all measurable bounded
functions g and t < s we have

E[gBYISE] = [ g)p(t,s, B, dy),



where for any Borel subset A of R = (—o0,0):
p(t,s, B, A) = P[B, € A|3Z] the transition probability of
Brownian motion and

p(t,s,x,A) =

;fexp{(—y)}dy
V2r(s—1t) 4 2(s—1t)

Therefore, using the well-known properties of conditional
mathematical expectation and Brownian motion, we can write

V(%) = E [} h(B)ds |Be| lg,=x =
= {1} E[R(BIB.1ds} 1g,-x = {J E[A(BISE]ds} |g,-r=

_ T oo 1 _ (Bt_y)z
- {ft [f—oo h(y) J2r(s-t) exp{ 2(s—t) }

- {m[ (<_yz>}

The last relation shows that, on the one hand, V (¢, x) is an
integral with variable boundary with respect to t, and on the
other hand, with respect to x, it is an integral that depends on
a parameter. Therefore, it is easy to verify that in our case
V(t,x)is continuously differentiable with respect to t and
twice continuously differentiable with respect to x, that is,
V (t, x)satisfies the conditions of the It6's formula.

dy | ds}1s,e=

J-h(y)e Xp dy] ds.

According to Ito's formula, we have

V(t,B) =V(0,By) + [ V(s,B) +3 V(s B )] ds+

_|_f —V(s B)dB,, (P-a.c.). 3)

On the other hand, due to the Markov property of the
Brownian Motion

V(&.B) = E[f] h(B)ds |Be = x] lewp, =

= E[J] h(B)ds |B| = E[J] h(B)ds [3F], (P-as.).
Therefore, under the conditions of the theorem, the process

Jy h(B)ds +V(t,B,) = E[f; h(By)ds |32 ]+
+E [f] h(B)ds [38] = E[ [} n(B)ds |3E] = M.,

is a martingale.

Further, according to Levy's theorem, it is obvious that M,
is a continuous martingale. On the other hand, a continuous
martingale of bounded variation starting from 0 is identically
equal to 0. Therefore, in equality (3), the term of bounded
variation in total with an additional term (foth(Bs)ds) of
bounded variation of martingale M is equal to zero.

Hence, taking into account equality

Mo = V(0,Bo) = E [ f; h(B))ds |Bo|=

—F [ Jy h(By)ds |slg] —F [ fOTh(BS)ds], (P-as.),
we easily complete the proof of the theorem.
Let hs(w) be an integrable process adapted to the flow of
g-algebras3Z. Denote

F(t,T) = f Ths (w)ds
and
F=F(0,T) = [ hy(w)ds.

Theorem 4. Suppose that F (t, T) admits a decomposition
F(t,T) = F,(t,T) + F,(t,T), where F,(¢t, T) is a continuous
process of finite variation, adapted to the flow of ¢ -algebras
32 with F; (0, T) = 0 (if such a decomposition does not exist,
then we assume that F; (¢t,T) = 0). If the function V (¢, x) =
E[F,(t, T)|B; = x] satisfies the requirements of the classical
Itd formula (i.e. V() € CY2([0, T X R])), then the following
stochastic integral representation is fulfilled

F =E[F] + f V(. B)dB,, (P-a.c.). 4

Remark 3. It should be noted that the result of the above
theorem is especially interesting for non-smooth hg(w),
although it is also useful in the case of smooth hg(w).

Theorem 5. Let hy(w) € D, , for almost all s. Then the
Clark-Ocone representation (1) for the functional F =
fOT hs(w)ds follows from the above representation (4).

Remark 4. Note that an approach similar to our theorem

can also be used for functionals depending on the last moment
of time. There is the following statement.

Proposition 3. If F = Ip,_ .y, then the function V (¢, x) =
E[F|B; = x] satisfies the requirements of the Ito's formula
and the following stochastic integral representation is valid

I{BTSC}ch( )+fo = (

where ¢ is the density of the standard normal distribution.

c—B¢

)dBt, (P-as.),

Now consider the stochastically non-smooth integral
functional

T
F = [} Ipscydt. (5)

Proposition 4. The functional F from (5) has the
following stochastic integral representation

T c T
F=f CD(—)dt+f‘PC,t,B dB;,
0 \/E o ( t) t

where

lP(ctx)——Z\/—cp<\/Txt)-l-



+(C — x) [Zl{xsc} -1- erf <\/%>]

and
2 (x 2
erf (x) = \/_ﬁfo exp {—u?}du.

Proposition 5. If f(-):[0,T] X R = R is a measurable
bounded function and hg(w) = f(s,Bs(w)) , then the
function V(t,x) = E[F(t,T)|B; = x] satisfies the require-
ments of the Ito formula.
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