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Abstract—In this study the Unscented Kalman Filter (UKF) 

and Singular Value Decomposition (SVD) methods are 

integrated in the nontraditional attitude filtering algorithm to 

estimate a small satellite's attitude.  Influence of the process 

noise bias type system changes to the innovation of UKF is 

investigated.  It is proved that the bias type process noise change 

may be converted to the mean square of innovation of UKF and 

such type of changes can be compensated using the covariance 

scaling techniques. 
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I. INTRODUCTION 

Sun sensor and magnetometer onboard small spacecraft 
flying low Earth altitudes are typically used as attitude 
sensors. Employing a Kalman filtering approach, the 
measurements from magnetometers and Sun sensors are fused 
within a satellite dynamics propagation model. This integrated 
process allows for estimating the satellite's attitude, serving as 
a fundamental solution to the problem of attitude estimation. 
The nonlinear measurements of reference directions can be 
used to create a Kalman filter for satellite attitude and rate 
estimates in traditional approaches [1,2]. The nonlinear 
models of the reference directions serve as the foundation for 
the measurement models in the filter. Therefore, nonlinear 
equations are used to link the data and states. 

When employing a non-traditional method, the attitude 
angles are initially computed using vector measurements and 
a method that determines orientations in a single frame at each 
recursive step. Subsequently, these attitude angles are directly 
utilized as measurement inputs for an attitude filter, such as 
the Extended Kalman filter (EKF) [3-5] or Unscented Kalman 
filter (UKF) [5-7]. 

The Unscented Kalman Filter and Singular Value 
Decomposition (SVD) methods are integrated in the 
nontraditional attitude filtering algorithm to estimate a 
nanosatellite's attitude. The SVD approach determines the 
attitude of the nanosatellite and provides one estimate at a 
single frame utilizing measurements from the magnetometer 
and Sun sensor as the initial stage of the algorithm. These 
attitude terms are subsequently fed into the UKF with their 
error covariances.  

It is shown in this study that the process noise bias type 
system changes will cause a change in the statistical 
characteristics of the innovation of UKF. The theoretical 
basics of the Q-adaptive SVD-aided UKF with uncertain 
process noise mean are developed and presented. For the 

purpose of estimating a nanosatellite's attitude, simulations are 
compared using the adaptive and non-adaptive versions of the 
nontraditional attitude filter in the presence of process noise 
bias. 

II. SATELLITE ROTATIONAL MOTION AND ATTITUDE 

MEASUREMENT MODELS 

By using the quaternion attitude representation, the 
satellite's kinematics equation of motion can be expressed as, 

 

1
( ) ( ( )) ( )

2
BRt t t= q ω q

 () 

Here q  consists of four attitude parameters in the 

quaternion,  1 2 3 4 .
T

q q q q=q  Since the last term is a 

scalar and the first three terms are vector terms, we may 

rewrite the quaternion as 4

T
T q =  q g ,  1 2 3

T
= q q qg

, ( )BR   is the skew symmetric matrix having the 

components of BR  angular velocity vector of  body frame 

with respect to the reference (orbital) frame. 

It is important to specify the body's angular rate vector in 
relation to the inertial axis frame independently from the 

angular velocity vector, .
T

BI x y z   =  
BI  and 

BR  can be related via, 

  0 0 .
T

BR BI oA = − − 
 () 

Here 
o  indicates the satellite's angular orbital velocity, 

A  is the attitude matrix. In (3) the attitude matrix A  and the 
quaternions are related by the relation, 

  
22

4 3 3 4( ) 2 2TA q I q= − + − g gg g
 () 

where 3 3xI  is the identity matrix with the dimension of  3 3

and  g  is the skew-symmetric matrix whose elements are 

the components of g  vector. 

Based on Euler's equations, it is possible to deduce the 
satellite's dynamic equations,  
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 ( ) ,BI
d BI BIJ J

dt
= − 


 N  (4) 

where J  is the principal moments of inertia matrix as 

( ), ,x y zJ diag J J J=  and 
dN  is the vector of disturbance 

torque affecting the nanosatellite.  

This study outlines our approach for attitude determination 
on a nanosatellite that incorporates both magnetometers and a 
Sun sensor as attitude sensors. These sensors are considered 
classic examples since they provide unit vector measurements. 
To determine the attitude, it is necessary to establish the unit 
vectors in the reference orbit frame that correspond to the unit 
vectors measured by the sensors in the spacecraft body frame. 
The measurement models presented in this study depict the 
relationships between these computed and measured unit 
vectors, facilitating accurate attitude determination. 

The magnetometer measuring model can be described as 
follows, 

 1b o= A +B B
 () 

Here 
bB  is the measured magnetic field vector in the body 

frame, 
oB is the calculated magnetic field vector in the orbit 

frame and 
1  is the assumed to be zero-mean Gaussian white 

noise.  

The Sun direction measurement model in orbital frame can 
be expressed as follows  

 2b o= A +S S
 () 

Here bS  is the measured Sun direction vector in the body 

frame, oS is the calculated Sun direction vector in the orbit 

frame and 2 , which is taken to be zero-mean Gaussian white 

noise. It is assumed that that the magnetometers and Sun 
sensors are calibrated against any bias and/or misalignment. 

III. INTEGRATION OF SINGULAR VALUE DECOMPOSITION 

AND UNSCENTED KALMAN FILTER FOR ATTITUDE 

ESTIMATION 

The nontraditional attitude estimation procedure that is 
composed of two stages as singular value decomposition 
(SVD) and unscented Kalman filter (UKF) is presented in this 
section.  

A. Singular Value Decomposition Method 

Single-frame attitude estimate techniques include the 
Singular Value Decomposition (SVD, q-method, QUEST, 
FOAM, and others. Due to its greater robustness, the SVD 
approach is chosen as the single-frame method in this instance 
[8]. 

Given a set of vector measurements, , in the 

body system, choosing to minimize the loss function given as 
for an ideal attitude matrix, A, is one possibility, 
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1

ˆ ˆ( )
n

i i

i B R

i

J A w u Au
=

= −
 () 

where iw is the weight of the ith vector measurement, ˆ
i

Ru  is 

the vector in the reference coordinate system. 

When we express the loss function as (7), the problem 

reduces to the problem of maximizing the trace, ( )tr TAB . 

Among the single-frame attitude estimate algorithms, the 
SVD is one of the most accurate, dependable, and robust 
techniques, as thoroughly addressed in [8].  

Decomposition of the matrix B into singular values, 

 
 11 22 33diagT T TB U V U V=  =   

 () 

where U and V are orthogonal and the singular values obey 

11 22 33 0       . The trace is therefore maximized for, 

 
diag[1 1 det( )det( )]T

optU A V U V=
 () 

and the optimal rotation matrix is, 

 
diag[1 1 det( )det( )] T

optA U U V V=
 () 

By looking at the covariance matrix for rotation angle 

error, the accuracy of the estimated optA  can be known. If we 

first define 𝑠1 = ∑11 , 𝑠2 = ∑22 , 𝑠3 = 𝑑𝑒𝑡(𝑈)𝑑𝑒𝑡(𝑉)∑33 
then the covariance matrix 𝑃𝑠𝑣𝑑 is calculated as, 

 
1 1 1

2 3 3 1 1 2diag[(s s ) (s s ) (s s ) ] T

svdP U U− − −= + + +
 () 

B. Unscented Kalman Filter for Rotational Motion 

Estimation 

The Unscented Transform, which is a deterministic 
sampling technique, is utilized in our approach to obtain a 
reduced set of sample points (or sigma points) from the prior 
mean and covariance of the states. This technique forms the 
basis of the Unscented Kalman Filter (UKF). These sigma 
points are transformed nonlinearly. The altered sigma points 
are used to calculate the posterior mean and covariance [9].  

Since discrete-time nonlinear equations are used to 
construct the UKF, the following equations represent the 
process model, 

 
( 1) ( ( ), ) ( )x k f x k k w k+ = +

 () 

 
( ) ( ) ( )y k Hx k v k= +

 () 

Here, ( )x k is the state vector and ( )y k  is the 

measurement vector. Moreover ( )w k  and ( )v k  are the 

process and measurement error noises, which, according to the 
assumption, are processes with Gaussian white noise with 

zero mean and a covariance of ( )Q k and ( )R k respectively, 

H  is the measurement matrix of system. The unscented 
Kalman filter is presented in Appendix A.  

IV. INFLUENCE OF PROCESS NOISE BIAS TO THE INNOVATION 

In this Section influence of process noise bias type system 
changes to the innovation of UKF is investigated. 

2n  ˆ i

Bu



Assumption. The process noise is assumed to be biased 

and its average value is given by  ( ) ( ).E w k k=  

It is clear that in this case the system state estimates will 
be biased.  

Theorem: If the measurements are processed by the UKF 
a process noise bias occurs at the iteration step k = , then 

at the all k   steps the estimation and innovation of UKF 

are biased and innovation bias is equal to the observed 
prediction bias.  

A sampling covariance matrix of innovation is presented 
as statistics for detecting and compensating for changes in 
process noise. The sample covariance matrix of the innovation 

( )j  may be expressed as follows  

 1

1ˆ ( ) ( ) ( )
k

T

j k M

S k j j
M

  
= − +

= 
 () 

where 𝑀 is the width of the “sliding window”.  

If there exists a bias in the mean of the innovation at time 

, we denote the biased innovation as ( )b k , then the biased 

innovation is defined as, 

 ( ) ( )b k k =   𝑘 = 1,2, . . .  − 1 () 

 ( ) ( ) ( )b k k k  = +   𝑘 = ,  + 1, .. () 

where (.) is an unknown bias vector. In the case of k  , in 
the sample innovation covariance (14) a biased innovation 

( ) ( ) ( )b k k k  = + is used instead of an unbiased innovation 

( )k , where ( )k  is the innovation bias. 

Remark. Note that the mean of the innovation ( )b k in 

this case is not zero, therefore the formula (14) with ( )b k  is 

not a sample covariance. In the "sliding window" it is the mean 
square of innovation (MSI).  

Statement. The biased innovation ( )b k leads to an 

increase in the mathematical expectation of the mean square 
of innovation. 

It can be seen from the Theorem and the Statement above 
that the process noise bias is transferred to the innovation bias 
and changes the mean square of innovation. As a result, the 
bias in the process noise is transferred to the MSI. Thus, the 
MSI can be chosen as a monitoring statistic.  

V. Q-ADAPTIVE INTEGRATED SVD/UKF ATTITUDE 

ESTIMATION ALGORITHM 

The SVD approach runs as the initial stage of the 
algorithm and provides one estimate per single frame for the 
nanosatellite attitude. The UKF is then provided with these 
estimated attitude terms as input. As a result, the satellite's 
attitude is calculated (see Fig.1). ‘SVD-aided UKF’ is called 
‘SaUKF’ for short. ‘Q-Adaptive SVD-aided UKF’ is called 
‘ASaUKF’ throughout the text for brevity. 

 

Fig. 1. Flow chart of SaUKF and ASaUKF algorithms. 

The estimation covariance from the SVD is also input into 
the UKF method and used as the filter's measurement noise 
covariance matrix in addition to the estimated quaternions, i.e. 

( 1) ( 1)svdR k P k+ = + .  Because of this, the nontraditional 

filter is intrinsically robust to measurement noise increments 
in particular. The SVD's estimation covariance, which is also 
the filter's measurement noise covariance, increases in the 
presence of a measurement error, allowing the filter to 
function without being significantly affected [7].  

The adjustment of the filter's process noise covariance 
matrix, Q  presents one challenge for nontraditional attitude 

filters. When the environment changes, it's very important to 
optimize the process noise covariance. These changes include 
adjustments to the inertia parameters (as when the satellite 
enters or exits an eclipse) and adjustments to the disturbance 

torques. In this study, the scaling matrix ( )k  is defined as 

( ) ( )

1

*

1

1

( ) ( 1) ( 1) ( 1)

1
1 1 ( 1) ( 1/ ) ( 1) ( 1)

( 1) ( ) ( 1) ( 1)

T T

k
T T

j k

T

k H k H k H k

j j H k P k k H k R k

H k Q k H k H k



 


−

= − +

−

  = + + +  

 
+ + − + + + − + 

 

  + + + 



   () 

Here, ( )* 1P k k+  is the predicted covariance without the 

additive process noise. 

TABLE I.   RMS ERROR FOR SAUKF AND ASAUKF FOR PROCESS NOISE BIAS CASE 

RMS Error 
Process Noise Bias 

low
 medium

 high  

 SaUKF ASaUKF SaUKF ASaUKF SaUKF ASaUKF 

q1 
0.00186 0.00270 0.00198 0.00273 0.00223 0.00284 

q2 0.00317 0.00253 0.00501 0.00429 0.00752 0.00675 

q3 0.00192 0.00189 0.00247 0.00227 0.00323 0.00283 

q4 0.00585 0.00509 0.00743 0.00660 0.00956 0.00869 

 



An adaptive technique is used to tweak the UKF in order 
to adapt it to the changing environment. The adaptation rule is 
simple to implement because the measurement model is 
linear. 

VI. ANALYSIS OF SIMULATION RESULTS 

A tumbling small satellite is considered for the analysis in 
order to test the presented algorithms under crucial 
measurement and environmental challenges. The nanosatellite 
has the principal moment of inertia

  2diag 0.055 0.055 0.017  kg mJ = . The algorithm runs 

for almost 1 orbital period with 1 Hz sampling rate for the 
filter and the sensors. The sensors are selected as three-axis 
magnetometers and three-axis Sun sensors corrupted by the 

standard deviations of 300 nTB =  for magnetometers and 

0.002S =  for Sun sensors. To demonstrate how the filter 

behaves that is integrated with a single-frame method in these 
intervals, an eclipse period is introduced between 500th and 
1500th seconds. SaUKF and ASaUKF are compared for the 
adaptation of process noise bias between 4500th and 5500th 
seconds. 

 

Fig. 2. Quaternion estimation errors of ASaUKF under process noise bias 

applied as 𝛿high. 

For investigating the filter’s ability to adapt against 
process bias faults the algorithm is tested for three different 
faults: low, medium and high noise bias for a short period of 
time. Process noise biases are identified by adding the 
constant bias term to the process noise between 4500th and 
5500th s. For the test case the constant term is selected as 

 low medium high   =  to represent low, medium, and high 

bias cases:  

 low 0.005 0.005 0.005 0 0 0 ;
T

 =

 medium 0.008 0.008 0.008 0 0 0 ;
T

 =

 high 0.012 0.012 0.012 0 0 0
T

 =
  

The Root Mean Squares Errors (RMS) for SaUKF and 
ASaUKF algorithms for process noise bias cases are shown in 

Table 1. The estimation errors from low to high levels of 
process noise bias show increase of error. In Fig. 2, quaternion 
estimations of ASaUKF and SaUKF algorithms are given 

when having noise biases of 
high level. As seen, using 

adaptive algorithm, the attitude quaternions can be estimated 
reasonably well. The obtained results show that the bias type 
process noise changes can be compensated using the 
covarince scaling techniques. 

VII. CONCLUSIONS 

In this study, an attitude filtering technique is proposed 
that adapts the process noise uncertainties. The bias and noise 
increment type process noise uncertainties are taken into 
consideration. To begin with, the Unscented Kalman Filter 
(UKF) and Singular Value Decomposition (SVD) methods are 
combined to estimate a nanosatellite's attitude. Influence of 
the process noise bias type system changes to the innovation 
of UKF is investigated.  It is proved that the bias type process 
noise change may be converted to the mean square of 
innovation of UKF and such type of changes can be 
compensatd using the covarince scaling techniques.  

Various levels of process noise bias type system changes 
are tested. Simulations are compared using the adaptive and 
non-adaptive versions of the nontraditional attitude filter. The 
simulation results show that, in the cases of process noise bias, 
the multiple fading factors based adaptive SVD-aided UKF 
can adapt to the changing environment better than the SaUKF.  
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Appendix A 

The unscented Kalman filter is well known and can be 
found elsewhere (e.g. [9]). In this appendix we restate the 
fundamental UKF equations applied to the attitude and rate 
estimation problem of nanosatellite. 

The UKF algorithm's first phase is deciding the 2𝑛 + 1 
sigma points with a mean of 𝑥̂(𝑘|𝑘)  and a covariance of 
𝑃(𝑘|𝑘). For an n dimensional state vector, these sigma points 
are obtained by, 



( ) ( )0
ˆk k k k=x x , (A.1a)                                     

( ) ( ) ( ) ( )( )ˆk k k k n P k k


= + +x x , (A.1b)                                   

( ) ( ) ( ) ( )( )ˆ
n k k k k n P k k



+ = − +x x ,         (A.1c)                                

where, ( )0 k kx , ( )k kx and ( )n k k +x  are sigma points, 

n is the state number, and  is the scaling parameter which 

is employed for fine tuning. ( ) ( )( )n P k k


+  corresponds 

to the 
th  column of the indicated matrix and   is given as

1 n = .  

The UKF procedure's subsequent step is to assess the 
transformed set of sigma points for each of the points using,   

( ) ( )1 , .l lk k f k k k + =  x x 𝑙 = 0…2𝑛       ( A.2)                                      

The anticipated mean and covariance are then calculated 
using these transformed values [9]. 
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         (A.3b) 

Here, ( )ˆ 1k k+x is the predicted mean, ( )1P k k+ is the 

predicted covariance, ( )* 1P k k+  is the predicted covariance 

without the additive process noise. 

       Furthermore, the predicted observation vector is,  

ˆ ˆ( 1/ ) ( 1/ )y k k Hx k k+ = + .                          (A.4) 

The observation covariance matrix is then calculated as 
follows,  

( 1/ ) ( 1/ ) T

yyP k k HP k k H+ = + .          (A.5)                                

The cross-correlation matrix, on the other hand, can be 
found as, 

( 1/ ) ( 1/ ) .T

xyP k k P k k H+ = +                     (A.6)                                       

The UKF algorithm's update step comes next. The residual 

term ( 1)k +  (or innovation sequence) is established at that 

stage as the difference between the actual observation and the 
predicted observation, initially by employing measurements 

( )1y k + , 

( ) ( ) ( )ˆ1 1 1 ,k y k y k k + = + − +          (A.7)                                         

The innovation covariance is,  

( ) ( ) ( )1 1 1

( 1/ ) ( 1)

vv yy

T

P k k P k k R k

HP k k H R k

+ = + + + =

+ + +
                   (A.8) 

Here ( )1R k + is the measurement noise covariance 

matrix. Equation is used to calculate the Kalman gain, 

( ) ( ) ( )11 1 1 .xy vvK k P k k P k k−+ = + +        (A.9)                                                

Finally, the covariance matrix and updated states are 
determined by, 

( ) ( ) ( ) ( )ˆ ˆ1 1 1 1 1 ,x k k x k k K k k+ + = + + + +    (A.10)                                           

( ) ( )

( ) ( ) ( )1

1 1 1

1/ 1 1/ .T

xy xy

P k k P k k

P k k P k k P k k

−

+ + = + −

+ + +
          (A.11a)                    

or 

( ) ( )

( ) ( ) ( )

1 1 1

1 1 1 .T

vv

P k k P k k

K k P k k K k

+ + = + −

+ + +
                   (A.11b) 

Here, ( )ˆ 1 1x k k+ + is the estimated state vector and 

( )1 1P k k+ + is the estimated covariance matrix.

 


