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Abstract—In this study the Unscented Kalman Filter (UKF)
and Singular Value Decomposition (SVD) methods are
integrated in the nontraditional attitude filtering algorithm to
estimate a small satellite’s attitude. Influence of the process
noise bias type system changes to the innovation of UKF is
investigated. Itis proved that the bias type process noise change
may be converted to the mean square of innovation of UKF and
such type of changes can be compensated using the covariance
scaling techniques.
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I. INTRODUCTION

Sun sensor and magnetometer onboard small spacecraft
flying low Earth altitudes are typically used as attitude
sensors. Employing a Kalman filtering approach, the
measurements from magnetometers and Sun sensors are fused
within a satellite dynamics propagation model. This integrated
process allows for estimating the satellite’s attitude, serving as
a fundamental solution to the problem of attitude estimation.
The nonlinear measurements of reference directions can be
used to create a Kalman filter for satellite attitude and rate
estimates in traditional approaches [1,2]. The nonlinear
models of the reference directions serve as the foundation for
the measurement models in the filter. Therefore, nonlinear
equations are used to link the data and states.

When employing a non-traditional method, the attitude
angles are initially computed using vector measurements and
a method that determines orientations in a single frame at each
recursive step. Subsequently, these attitude angles are directly
utilized as measurement inputs for an attitude filter, such as
the Extended Kalman filter (EKF) [3-5] or Unscented Kalman
filter (UKF) [5-7].

The Unscented Kalman Filter and Singular Value
Decomposition (SVD) methods are integrated in the
nontraditional attitude filtering algorithm to estimate a
nanosatellite's attitude. The SVD approach determines the
attitude of the nanosatellite and provides one estimate at a
single frame utilizing measurements from the magnetometer
and Sun sensor as the initial stage of the algorithm. These
attitude terms are subsequently fed into the UKF with their
error covariances.

It is shown in this study that the process noise bias type
system changes will cause a change in the statistical
characteristics of the innovation of UKF. The theoretical
basics of the Q-adaptive SVD-aided UKF with uncertain
process noise mean are developed and presented. For the
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purpose of estimating a nanosatellite's attitude, simulations are
compared using the adaptive and non-adaptive versions of the
nontraditional attitude filter in the presence of process noise
bias.

Il.  SATELLITE ROTATIONAL MOTION AND ATTITUDE
MEASUREMENT MODELS

By using the quaternion attitude representation, the
satellite's kinematics equation of motion can be expressed as,

. 1
G(t) =5 Q(wg (1))q (1)
2 : (1)
Here ¢ consists of four attitude parameters in the
quaternion, q=[q, q, g, q,] . Since the last term is a
scalar and the first three terms are vector terms, we may
rewrite the quaternion as q :[gT qJT vo=[a a0 ]
v Qogg)
components of @y, angular velocity vector of body frame
with respect to the reference (orbital) frame.

is the skew symmetric matrix having the

It is important to specify the body's angular rate vector in
relation to the inertial axis frame independently from the

N T
angular velocity vector, @y =[w, ©, ] . @, and
@y, can be related via,

~A[0 -@, 0].

Wy = Wp, o

2

Here o, indicates the satellite's angular orbital velocity,

A is the attitude matrix. In (3) the attitude matrix A and the
quaternions are related by the relation,

A:(q§_|g|2)|3x3+299T_2q4[gx] (3)

>

where |5, is the identity matrix with the dimension of 3x3

and [g ><] is the skew-symmetric matrix whose elements are
the components of J vector.

Based on Euler's equations, it is possible to deduce the
satellite's dynamic equations,
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Per
dt

where J is the principal moments of inertia matrix as
J =diag(J,.J,,3,) and N, is the vector of disturbance

J =Nd_wBIX(‘]wBI)7 4)

torque affecting the nanosatellite.

This study outlines our approach for attitude determination
on a nanosatellite that incorporates both magnetometers and a
Sun sensor as attitude sensors. These sensors are considered
classic examples since they provide unit vector measurements.
To determine the attitude, it is necessary to establish the unit
vectors in the reference orbit frame that correspond to the unit
vectors measured by the sensors in the spacecraft body frame.
The measurement models presented in this study depict the
relationships between these computed and measured unit
vectors, facilitating accurate attitude determination.

The magnetometer measuring model can be described as
follows,

B, = AB, +17, )

Here B, isthe measured magnetic field vector in the body
frame, B, is the calculated magnetic field vector in the orbit
frame and 7, is the assumed to be zero-mean Gaussian white
noise.

The Sun direction measurement model in orbital frame can
be expressed as follows

S, = AS, +1, ) (6)

Here S, is the measured Sun direction vector in the body
frame, S, is the calculated Sun direction vector in the orbit
frame and 7, , which is taken to be zero-mean Gaussian white
noise. It is assumed that that the magnetometers and Sun
sensors are calibrated against any bias and/or misalignment.

IIl.  INTEGRATION OF SINGULAR VALUE DECOMPOSITION
AND UNSCENTED KALMAN FILTER FOR ATTITUDE
ESTIMATION

The nontraditional attitude estimation procedure that is
composed of two stages as singular value decomposition
(SVD) and unscented Kalman filter (UKF) is presented in this
section.

A. Singular Value Decomposition Method

Single-frame attitude estimate techniques include the
Singular Value Decomposition (SVD, g-method, QUEST,
FOAM, and others. Due to its greater robustness, the SVD
approach is chosen as the single-frame method in this instance

[8]-
Given a set of N> 2 vector measurements, Uy, , in the

body system, choosing to minimize the loss function given as
for an ideal attitude matrix, A, is one possibility,

IW=3w g — Adt |
i=1 s (7)

where W, is the weight of the i vector measurement, l]'R is
the vector in the reference coordinate system.

When we express the loss function as (7), the problem
reduces to the problem of maximizing the trace, tr(ABT) .

Among the single-frame attitude estimate algorithms, the
SVD is one of the most accurate, dependable, and robust
techniques, as thoroughly addressed in [8].

Decomposition of the matrix B into singular values,

B=UX'V' =Udiag[X,, %,, XV’ (8)

where U and V are orthogonal and the singular values obey
222, 224,20 . The trace is therefore maximized for,

UTA,V =diag[l 1 det(U)det(V)] ©)

and the optimal rotation matrix is,

A, =Udiagll 1 det(U)det(v)NV" (10)

By looking at the covariance matrix for rotation angle
error, the accuracy of the estimated A, can be known. If we

fII’St defll’le Sl = le ’ 52 = 222 ’ 53 = det(U)det(V)Z33
then the covariance matrix P, 4is calculated as,

Psvd =Udiag[(82+53)_1 (53+51)_1 (Sl-I-Sz)_l]UT an

B. Unscented Kalman Filter for Rotational Motion
Estimation

The Unscented Transform, which is a deterministic
sampling technique, is utilized in our approach to obtain a
reduced set of sample points (or sigma points) from the prior
mean and covariance of the states. This technique forms the
basis of the Unscented Kalman Filter (UKF). These sigma
points are transformed nonlinearly. The altered sigma points
are used to calculate the posterior mean and covariance [9].

Since discrete-time nonlinear equations are used to
construct the UKF, the following equations represent the
process model,

x(k +1) = f (x(k),k) +w(k)

(12)
y(k) = Hx(k) +v(k) (13)
Here, x(k) is the state wvector and y(k) is the

measurement vector. Moreover W(k) and v(k) are the

process and measurement error noises, which, according to the
assumption, are processes with Gaussian white noise with
zero mean and a covariance of Q(k)and R(k) respectively,

H is the measurement matrix of system. The unscented
Kalman filter is presented in Appendix A.
IV. INFLUENCE OF PROCESS NOISE BIAS TO THE INNOVATION

In this Section influence of process noise bias type system
changes to the innovation of UKF is investigated.



TABLE I.

RMS ERROR FOR SAUKF AND ASAUKF FOR PROCESS NOISE BIAS CASE

Process Noise Bias

RMS Error
5I0w é‘medium é‘high
SaUKF ASaUKF SaUKF ASaUKF SaUKF ASaUKF
0 0.00186 0.00270 0.00198 0.00273 0.00223 0.00284
92 0.00317 0.00253 0.00501 0.00429 0.00752 0.00675
U3 0.00192 0.00189 0.00247 0.00227 0.00323 0.00283
G 0.00585 0.00509 0.00743 0.00660 0.00956 0.00869

Assumption. The process noise is assumed to be biased
and its average value is given by E [w(k)]= 5 (k).

It is clear that in this case the system state estimates will
be biased.

Theorem: If the measurements are processed by the UKF
a process noise bias occurs at the iteration step k = 7, then
at the all k > z steps the estimation and innovation of UKF
are biased and innovation bias is equal to the observed
prediction bias.

A sampling covariance matrix of innovation is presented
as statistics for detecting and compensating for changes in
process noise. The sample covariance matrix of the innovation
v(j) may be expressed as follows

. 1 &
Sv(k)=ﬁ 2, vy ()
j=k-M+1 (14)

where M is the width of the “sliding window”.

If there exists a bias in the mean of the innovation at time
T, we denote the biased innovation as v, (k) , then the biased
innovation is defined as,

v,(K)=v(k), k=12,...7—1 (15)
vp(K)=v(K)+uk), k=57+1,. (16)

where p(.) is an unknown bias vector. In the case of k>, in
the sample innovation covariance (14) a biased innovation
v, (k) =v(k) + u(k) is used instead of an unbiased innovation

v(k) , where u(k) is the innovation bias.

Remark. Note that the mean of the innovation v, (k) in
this case is not zero, therefore the formula (14) with v, (k) is

not a sample covariance. In the "sliding window" it is the mean
square of innovation (MSI).

Statement. The biased innovation v, (k) leads to an

increase in the mathematical expectation of the mean square
of innovation.

It can be seen from the Theorem and the Statement above
that the process noise bias is transferred to the innovation bias
and changes the mean square of innovation. As a result, the
bias in the process noise is transferred to the MSI. Thus, the
MSI can be chosen as a monitoring statistic.

V. Q-ADAPTIVE INTEGRATED SVD/UKF ATTITUDE
ESTIMATION ALGORITHM

The SVD approach runs as the initial stage of the
algorithm and provides one estimate per single frame for the
nanosatellite attitude. The UKF is then provided with these
estimated attitude terms as input. As a result, the satellite's
attitude is calculated (see Fig.1). ‘SVD-aided UKF’ is called
‘SaUKF’ for short. ‘Q-Adaptive SVD-aided UKF’ is called
‘ASaUKF’ throughout the text for brevity.

Sun Direction |Magnetic Field

Measurement Models

v

Singular Value Decomposition

or
- Adaptive SaUKF (ASaUKF)
(Processing the scaling matrix: Q-adaptation)

- SVD-Aided Unscented Kalman Filter (SaUKF)

Attitude Estimations

Fig. 1. Flow chart of SaUKF and ASaUKF algorithms.

The estimation covariance from the SVD is also input into
the UKF method and used as the filter's measurement noise
covariance matrix in addition to the estimated quaternions, i.e.
R(kk+1) =P, (k+1) . Because of this, the nontraditional
filter is intrinsically robust to measurement noise increments
in particular. The SVD's estimation covariance, which is also
the filter's measurement noise covariance, increases in the
presence of a measurement error, allowing the filter to
function without being significantly affected [7].

The adjustment of the filter's process noise covariance
matrix, Q presents one challenge for nontraditional attitude

filters. When the environment changes, it's very important to
optimize the process noise covariance. These changes include
adjustments to the inertia parameters (as when the satellite
enters or exits an eclipse) and adjustments to the disturbance

torques. In this study, the scaling matrix A(k) is defined as

AR =[HT(k+DH(k+D] HT (k+1)x
e i v(j+)v" (j+1) = H(k+D)P (K +1/K)HT (k+1) — R(k +1)
HiSun

xHK+D[QUH" (k+DH(k+D) ]
17)

Here, P"(k +1|k) is the predicted covariance without the
additive process noise.



An adaptive technique is used to tweak the UKF in order
to adapt it to the changing environment. The adaptation rule is
simple to implement because the measurement model is
linear.

V1. ANALYSIS OF SIMULATION RESULTS

A tumbling small satellite is considered for the analysis in
order to test the presented algorithms under crucial
measurement and environmental challenges. The nanosatellite
has the principal moment of inertia
J =diag[0.055 0.055 0.017] kg m?. The algorithm runs

for almost 1 orbital period with 1 Hz sampling rate for the
filter and the sensors. The sensors are selected as three-axis
magnetometers and three-axis Sun sensors corrupted by the
standard deviations of o, =300 nT for magnetometers and

o, =0.002 for Sun sensors. To demonstrate how the filter

behaves that is integrated with a single-frame method in these
intervals, an eclipse period is introduced between 500™ and
1500 seconds. SaUKF and ASaUKF are compared for the
adaptation of process noise bias between 4500th and 5500th
seconds.

Quaternion Estimation Errors
T T T

T T T
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Fig. 2. Quaternion estimation errors of ASaUKF under process noise bias
applied as Gyigp-

For investigating the filter’s ability to adapt against
process bias faults the algorithm is tested for three different
faults: low, medium and high noise bias for a short period of
time. Process noise biases are identified by adding the
constant bias term to the process noise between 4500" and
5500" s. For the test case the constant term is selected as

8={Gu nesim Ongn} 10 represent low, medium, and high
bias cases:

S =[0.005 0,005 0.005 0 0 0] ;

8. =[0.008 0,008 0008 0 0 O] ;

Sy =[0.012 0012 0012 0 0 O]

The Root Mean Squares Errors (RMS) for SaUKF and
ASaUKF algorithms for process noise bias cases are shown in
Table 1. The estimation errors from low to high levels of
process noise bias show increase of error. In Fig. 2, quaternion
estimations of ASaUKF and SaUKF algorithms are given

when having noise biases of &, level. As seen, using

adaptive algorithm, the attitude quaternions can be estimated
reasonably well. The obtained results show that the bias type
process noise changes can be compensated using the
covarince scaling techniques.

VII. CONCLUSIONS

In this study, an attitude filtering technique is proposed
that adapts the process noise uncertainties. The bias and noise
increment type process noise uncertainties are taken into
consideration. To begin with, the Unscented Kalman Filter
(UKF) and Singular Value Decomposition (SVD) methods are
combined to estimate a nanosatellite's attitude. Influence of
the process noise bias type system changes to the innovation
of UKF is investigated. It is proved that the bias type process
noise change may be converted to the mean square of
innovation of UKF and such type of changes can be
compensatd using the covarince scaling techniques.

Various levels of process noise bias type system changes
are tested. Simulations are compared using the adaptive and
non-adaptive versions of the nontraditional attitude filter. The
simulation results show that, in the cases of process noise bias,
the multiple fading factors based adaptive SVD-aided UKF
can adapt to the changing environment better than the SaUKF.
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Appendix A

The unscented Kalman filter is well known and can be
found elsewhere (e.g. [9]). In this appendix we restate the
fundamental UKF equations applied to the attitude and rate
estimation problem of nanosatellite.

The UKF algorithm's first phase is deciding the 2n + 1
sigma points with a mean of X(k|k) and a covariance of
P(k|k). For an n dimensional state vector, these sigma points
are obtained by,



X, (klk)=%(k|k),  (Ala)

x, (KkIk) = %(KJk) +( (n+z<)P(k|k))7, (A.1b)

(A.lc)

. () = £(K ) =(f{n+ )P ([ )

where, x,(klk), x, (klk)and x . (k|k) are sigma points,
N is the state number, and K is the scaling parameter which

)
4

is employed for fine tuning. ( (n+K)P(k|k)) corresponds
4

to the ™ column of the indicated matrix and » is given as
y=1l..n.

The UKF procedure's subsequent step is to assess the
transformed set of sigma points for each of the points using,

x (k+1k)=f[x (k[k),k].l=0..2n  (A2)

The anticipated mean and covariance are then calculated
using these transformed values [9].

. 1 1

%(k +1|k)=m{xxo(k +1|k)+EIZ:1: x (K +1|k)}
,(A.33)

P(k+1Jk)=P"(k+1]k)+Q(k) =

Lt (k1) (k1) ] o 2 - k-2

n+x

+%zzn[x, (k+1k) % (k+1k) ][ %, (k +1fk) - % (k +1|k)]T}
1=1

+Q(k)

(A.3b)

Here, %(k+1|k)is the predicted mean, P(k +1Jk)is the
predicted covariance, P*(k +1|k) is the predicted covariance
without the additive process noise.

Furthermore, the predicted observation vector is,

9k +1/k) =HR(k +1/k) . (A.4)

The observation covariance matrix is then calculated as
follows,

P,(k+1/k)=HP(k+1/K)H™.  (A5)

The cross-correlation matrix, on the other hand, can be
found as,

P, (k+1/k) = P(k+1/K)HT. (A.6)

The UKF algorithm's update step comes next. The residual
term v(k +1) (or innovation sequence) is established at that

stage as the difference between the actual observation and the
predicted observation, initially by employing measurements

y(k+1),
v(k+1)=y(k+1)—y(k+1]k), (A7)

The innovation covariance is,

Py (k+1k)=P, (k+1k)+R(k+1)=

HP(K +1/K)H™ + R(k +1)

(A8)

Here R(k+1) is the measurement noise covariance

matrix. Equation is used to calculate the Kalman gain,
K(k+1)=P,(k+1k)R (k+1]k).  (A9)

Finally, the covariance matrix and updated states are
determined by,

R(k+1k +1) = R(k +1]k )+ K (k +1)v(k +1), (A.10)

P(k+1k+1)=P(k+1]k)-

(A.l1a)
P, (k+1/k)P}(k+1]k)P," (k +1/k).
or
P(k+1k+1)=P(k+1k)—
(krtk-+2) = P+ 1) Aiih)

K(k+1)P, (k+1k)KT (k+1).

Here, f((k +1lk +1) is the estimated state vector and
P(k +1|k +1) is the estimated covariance matrix.



