
DOI: https://doi.org/10.54381/pci2023.04

Modern Ways to Organize Computations in Cloud

Environment

Tamara Bardadym

Department of Intelligent Information

Technologies

V.M. Glushkov Institute of Cybernetics

of the National Academy of Sciences of

Ukraine

Kyiv, Ukraine

0000-0001-8657-8687

Sergiy Osypenko

Department of Intelligent Information

Technologies

V.M. Glushkov Institute of Cybernetics

of the National Academy of Sciences of

Ukraine

Kyiv, Ukraine

0000-0002-1903-8207

Vasyl Gorbachuk

Department of Intelligent Information

Technologies

V.M. Glushkov Institute of Cybernetics

of the National Academy of Sciences of

Ukraine

Kyiv, Ukraine

0000-0001-5619-6979

Oleksandr Lefterov

Department of Intelligent Information

Technologies

V.M. Glushkov Institute of Cybernetics

of the National Academy of Sciences of

Ukraine

Kyiv, Ukraine

0000-0002-1475-1281

Abstract—A short review of modern tools and capacities to

organize large-scale computations is presented based on the

authorʼs experience related with reproducibility of results

obtained by researchers in the process of their remote team

work. The work assumes proper access to large and

heterogeneous data sets stored, application of specific

programming tools available, software transfer between

different environments, efficient organization of cloud

computing.

Keywords—cloud service; containerized application; isolated

software environment; reproducibility of calculations

I. INTRODUCTION

The main goal of this paper is to describe our experience
in developing applied analytical system for biomedical
computations based on certain main principles of organization
and existing modern computing tools [1−2]. The principles
include the reproducibility of research results related with big
data [3−4]. Similarly to experiments in physics, biology,
chemistry, numerical experiments in cybernetics and
informatics may be reproduced. In the context of computing,
reproducibility means reconstruction of all conditions for the
numerical experiments including the software used. In
addition, reproducibility of big data becomes the requirement
for biomedical numerical experiments.

II. CONTAINERISATION AND OTHER TOOLS

Modern software tools used in biomedical studies are quite
often distributed in the form of packages of the R software
environment. There are more than 10,000 packages available
in this environment, a special place among which is the
Bioconductor package [5], it contains about 2000
bioinformatics computing methods. There are also R-
packages where of high-performance, parallel and distributed
computing is implemented [6]. This allows to effectively use
the R in cluster environments and on grid platforms. The use
of these approaches involves configuring the computing
environment, installing additional software. Moreover, to
ensure reproducibility of calculations, it is necessary to be able
to provide a computing environment identical to the one in
which the results were obtained.

The other approach to the implementation of high-
performance computing in the study of the human genome is
implemented in the Cancer Genomics Cloud (CGC) cloud
service [7]. It is a specialized cloud platform that provides free
access to genetic, medical databases, in particular – The
Cancer Genome Atlas (TCGA) [8], and more than 450 public
applications designed to analyze data on this topic. It is
possible to expand this list with the own applications, data
sets, research results (currently there are more than one
million on this service), to involve other researchers in
projects. The main difference of this approach is that the cloud
service does not require the installation of additional software.
All the software needed (for example, the language
environment R or Python with all the necessary packages) is
isolated in Docker containers [9], so, every software
application is nothing else than a collection of containers.
Such a software application can be described as an analysis
scheme (workflow). The sequence of steps (Docker
processes), input and output parameters, requirements for the
number of resources required for the operation of such a
scheme are described using the Common Workflow Language
(CWL, [10]). This approach with the help of special tools (for
example, cwltool and visual and code editor for Common
Workflow Language – Rabix composer, see [11]) can be used
to obtain reproducible biomedical calculations both in the
cloud environment and on a personal computer (for example,
for its testing).

The popularity of the containerized application approach
in bioinformatic computing is indicated by the fact that the
Bioconductor package is available in a containerized form as
a service on Amazon Web Services and CGC (where it can be
used for interactive analysis [7]). The containerized web
version of R-Studio with the R environment, which includes
the Bioconductor package, can be downloaded from the
Docker Hub resource [12].

III. CONTAINERISATION. OUR EXPERIENCE

When creating the analytical system of biomedical
calculations [1] we had a need to test the developed software
on real data. Based on the approaches presented in [13-14],
optimization models and methods for solving problems of

https://doi.org/10.54381/pci2023.04

constructing linear classifiers have been developed. In
particular, the problem of constructing classifiers for linearly
indivisible sets was formulated as a problem of minimizing
the band of incorrect classification of training sample points.
This model belongs to the class of optimization problems of
non-convex programming and is multi-extreme. Various
formulations of this problem are offered, approaches to
construction of approximate decisions and calculation of
estimations of optimum values are considered. To solve these
optimization problems, methods of non-smooth optimization,
namely r-algorithms of N.Z. Shor [15-16] and exact penalty
functions [17-18] were used. When creating appropriate
software, modern libraries of linear algebra, similar to [19-21]
should be used to speed up arithmetic operations. So, the
combination of algorithms based on non-smooth optimization
methods and the use of modern libraries of linear algebra was
implemented in the developed software module
NonSmoothSVC.

To test the abilities of the new classifier NonSmoothSVC
a comparison with existing tools was made. The methods
integrated into the library scikit-learn [22] were chosen,
namely Linear SVC, NuSVC, Ada Boost. The two last
methods are non-linear classifiers, they were chosen to get
additional information concerning advantages of different
methods for different problems. The need to test new software
on real data forced us to locate the software module
NonSmoothSVC into a containerized application (using
Docker technology [9]) for use on a personal computer, as
well as on a cluster, grid, and cloud environment.

Computational experiments have demonstrated that on
some data sets the NonSmoothSVC has qualitative advantages
over other methods involved in the comparison, but is inferior
in speed. Particularly, on linearly separable samples the
NonSmoothSVC gained an advantage over the LinearSVC in
the number of cases with better classification accuracy. On the
unbalanced samples, the NonSmoothSVC software slightly
outperformed the LinearSVC software in the number of cases
with better classification accuracy on average, but
demonstrated an advantage in some parts of the classification
accuracy scale. Full description of numerical experiments and
the results of testing can be found in the report (in Ukrainian)
at http://moderninform.icybcluster.org.ua/ais/.

Thanks to the containerized form, the developed software
can become publicly available tool and application of this and
other services in the problems of constructing optimized linear
classifiers using modern libraries of linear algebra. In the
presence of technical possibilities, parallelization on
microprocessor networks looks promising. This approach is
especially recommended in the case of large data samples,
when the dimension of the feature space is tens of thousands.

In terms of using cluster technologies, creating
environments separate for each user and maintaining them in
a conflict-free state is quite a burdensome task (unless you use
special software configuration tools). Most of the libraries and
applications used in biomedical computing do not provide
efficient use of parallel multithreaded computing with multi-
core processors. Nevertheless, our first numerical experiments
on OpenStack [23] test deployment and comparison of virtual
and real cluster environments look to be perspective. In the
paper [24] we give a detailed description of test deployment
of OpenStack to create a scalable computing environment for
reproducible scientific computing using modern technological
solutions, which can be applied to both cloud (OpenStack,

AWS, Google) and cluster platforms (Slurm).The structure of
the created test containerized (using Singularity technology)
biomedical application which contains modern software and
libraries and can be used in conventional and cloud virtual
cluster environments is briefly described. The results of a
comparative test of this application in the virtual cluster
environment Slurm under the control of OpenStack and in the
node of cluster SKIT-4.5 in the V.M. Glushkov Institute of
Cybernetics of the NAS of Ukraine are given. Information on
solving the problem of finding the optimal in terms of saving
resources scaling parameters for the developed application in
two comparable cluster environments is given.

Some features of the use of these cluster environments are
clarified, in particular, a comparison of the dependence of the
application speed on the number of parallel processes for two
cluster environments is presented. Empirical data illustrate the
nature of the load on the OpenStack server and the use of
RAM on the number of parallel processes. Possibilities of
portability between the specified cluster environments,
scaling of calculations and maintenance of reproducibility of
calculations for the offered test application are demonstrated.
The advantages of using OpenStack technology for scientific
biomedical calculations are pointed out. The described
example of test deployment and use of OpenStack gives an
idea of the requirements for the necessary technical base to
ensure the reproducibility of scientific biomedical calculations
in cloud and cluster environments.

IV. TECHNOLOGIES THAT ENSURE THE REPRODUCIBILITY OF

SCIENTIFIC CALCULATIONS

Taking into account the peculiarities of biomedical
computing, reproducibility and their horizontal scaling (the
ability to increase the number of identical computing units to
solve one problem) can be achieved through the use of
containerized applications, software pipeline computing and
parameterization of software environment.

Technologies of containerization of software applications.
Due to the containerization of biomedical applications
(Docker, Singularity containerization technology) the
following can be achieved: reproducibility of the conditions in
which the calculations took place (invariability of software
including software and libraries), the possibility of horizontal
scaling provided the use of "stunning" model of parallelism in
cluster (Singularity) and cloud (using Docker) calculations.

Technologies of software pipelining of calculations.
Software pipeline allows you to organize flow calculations
(calculations in which the inputs and outputs of processes are
interconnected). Thanks to the use of tools for automation of
flow calculations (workflow engine) such as CWL (Common
Workflow Language), GWL (Guix Workflow Language),
Snakemake, Nextflow, it is possible to present a specific
calculation in the form of a task (text file, as usual, in YAML
format or JSON), the results of which can be reproduced [24].
In addition, there are tools that allow you to create / display
such tasks in the form of a graph of processes and data flows.
An example of such a tool is RABIX (Reproducible Analyzes
for Bioinformatics) – a graphical editor for CWL. Some
pipeline tools also use containerization (for example, CWL) –
such tasks can be performed both on a personal computer and
in a cloud environment. An important feature of streaming
automation tools is that the task description syntax allows you
to specify the scale of the calculations, indicating the number
of resources required. Seven Bridges' product, Cancer

Genomics Cloud [7] is an example of a cloud software
platform for performing reproducible biomedical
computations using containerization and pipelining.

Technologies for parametrization of software
environment. Parametrization of the software environment
allows you to reproduce, if necessary, an identical computing
environment. GNU Guix, Conda, Bioconda are examples of
tools that allow you to create an isolated software environment
for individual users in a cluster [25].

V. CONCLUSION

The paper has briefly described the first-hand experience
in complex organization of biomedical computations to
provide:

• reproducibility of results when any researcher can
verify the conclusions and technical features of new
results using precisely described containerized
environment and software used;

• proper access to real data placed in cloud environment;

• application of cloud services and specific
programming tools developed for the class of problems
considered;

• option of using computational tools for different
classes of problems;

• an opportunity of using the tools developed at technical
devices of various classes from a personal computer to
a powerful cluster.

Cloud and cluster technologies have enabled use of
containerization, and other modern computing tools. The first-
hand experience and practice would be helpful in efficient
organization of cloud computing.

REFERENCES

[1] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed.,
vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2] T. A. Bardadym, V. M. Gorbachuk, N. A. Novoselova, S. P. Osypenko,
and V. Yu Skobtsov, “Intelligent analytical system as a tool to ensure
the reproducibility of biomedical calculations,” Artificial Intelligence,
2020, №3, pp. 67–81.

[3] T. A. Bardadym, V. M. Gorbachuk, N. A. Novoselova, S. P. Osypenko,
V. Yu Skobtsov, and I. E. Tom, “On Biomedical Computations in
Cluster and Cloud Environment,” Cybernetics and Computer
Technologies, 2021, №2, pp. 76–84 https://doi.org/10.34229/2707-
451X.21.2.8.

[4] J. Ioannidis, “Why Most Published Research Findings Are False,”
PLoS Medicine, 2005, 2 (8), p.e124.
https://doi.org/10.1371/journal.pmed.0020124 (accessed June 30,
2023).

[5] M. Baker, "Reproducibility crisis?", Nature, 2016, vol. 26, №533,
pp. 353-366.

[6] Bioconductor. Open source software for bioinformatics. Available at:
https://www.bioconductor.org (accessed June 30, 2023).

[7] CRAN Task View: High-Performance and Parallel Computing with R.
Available at: https://cran.r-
project.org/web/views/HighPerformanceComputing.html (accessed
June 30, 2023).

[8] The Cancer Genomics Cloud. Available at:
http://www.cancergenomicscloud.org (accessed June 30, 2023).

[9] The Cancer Genome Atlas (TCGA). Available at:
http://www.cancer.gov/aboutnci/organization/ccg/research/structuralg
enomics/tcga (accessed June 30, 2023).

[10] Tools for creation of isolated Linux-containers. Available at:
http://www.docker.com/ (accessed June 30, 2023).

[11] Common Workflow Language. Available at:
https://www.commonwl.org/ (accessed June 30, 2023).

[12] Rabix composer. Available at: https://github.com/rabix/composer/
(accessed June 30, 2023).

[13] Docker containers for Bioconductor. Available at:
https://hub.docker.com/r/bioconductor/bioconductor_docker/
(accessed June 30, 2023).

[14] Yu. I. Zhuravlev, Yu. P. Laptin, A. P. Vinogradov, N. G. Zhurbenko,
O. P. Lykhovyd, and O. A. Berezovskyi, “Linear classifiers and
selection of informative features,” Pattern Recognition and Image
Analysis, 2017, vol. 27, №3, pp. 426–432.

[15] Yu. P. Laptin, Yu. I. Zhuravlev, and A. P. Vinogradov, “Comparison
of some approaches to classification problems, and possibilities to
construct optimal solutions efficiently,” Pattern Recognition and Image
Analysis, 2014, 24 (2), pp. 189–195.

[16] N. Z. Shor, “Nondifferentiable Optimization and Polynomial
Problems,” London, KluwerAcad. Publ., 1998. 381 p.

[17] N. Z. Shor, and N.G. Zhurbenko, “A minimization method using space
dilation in the direction of the difference of two successive gradients,”
Cybernetics, 1971, №3, pp. 51–59 (in Russian).

[18] Yu. P. Laptin, and T. A. Bardadym, “Problems of determining the
coefficients of exact penalty functions,” Cybernetics and systems
analysis, 2019, №3, pp. 64–79 (in Russian).

[19] Yu. P. Laptin, and T. A. Bardadym, “On approximate calculation of
the coefficients of exact penalty functions,” Mathematical and
computer modeling. Series: physical and mathematical sciences, 2019,
Iss. 19, pp. 54-60 (in Russian).

[20] Chang C.-C., Lin C.-J. LIBSVM - A Library for Support Vector
Machines. Available at: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
(accessed June 30, 2023).

[21] BLAS (Basic Linear Algebra Subprograms). Available at:
http://www.netlib.org/blas/ (accessed June 30, 2023).

[22] LAPACK – Linear Algebra PACKage. Available at:
http://www.netlib.org/lapack/ (accessed June 30, 2023).

[23] Free software machine learning library for the Python programming
language. Available at: https://scikit-learn.org/stable/index.html/
(accessed June 30, 2023).

[24] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: toward an
open-source solution for cloud computing,” International Journal of
Computer Applications, 2012, vol.55, №3, pp. 38–42.

[25] T. O. Bardadym, O. V. Lefterov, and S. P. Osypenko, “Experience of
OpenStack test deployment and comparison of virtual and real cluster
Environments,” Cybernetics and Computer Technologies, 2021, №3,
pp. 74–85 (in Ukrainian) https://doi.org/10.34229/2707-451X.21.3.7

https://doi.org/10.34229/2707-451X.21.2.8
https://doi.org/10.34229/2707-451X.21.2.8
https://doi.org/10.1371/journal.pmed.0020124
https://www.bioconductor.org/
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.cancergenomicscloud.org/
http://www.cancer.gov/aboutnci/organization/ccg/research/structuralgenomics/tcga
http://www.cancer.gov/aboutnci/organization/ccg/research/structuralgenomics/tcga
http://www.docker.com/
https://www.commonwl.org/
https://github.com/rabix/composer/
https://hub.docker.com/r/bioconductor/bioconductor_docker/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
https://scikit-learn.org/stable/index.html
https://doi.org/10.34229/2707-451X.21.3.7

