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Abstract—The limiting distribution of the integral square
deviation of kernel-type nonparametric estimator of Poisson
regression function is established. The test of the hypothesis
testing about Poisson regression function is constructed. The
question of consistency of the constructed test is studied. The
power asymptotic of the constructed test is also studied for
certain types of close alternatives.
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Let random variable Y take values 0,1,2,... with

probabilities

ﬂ,k

M(k.A)=P{Y=kj=_7e? 4>0, k=012....

Assume that the parameter A is the function of an

independent variable x €[0,1], i.e.

k
piy =k =2 Wi

ﬂ,(x) is known as Poisson regression function (see [1],
[2]). Letx;, i=1,2,...,n, be the division points of the interval
[0,1]:

i :ﬂ-, | :1,2,...,n
2n
Let further Y;, i=1,2,...,n, be independent Poisson random
variables with P{ -_k| } H(k,ﬂ(xi )) . The problem

consists in estimating the function A(x), xe[0,1] , by

sample Y;,Y,,...,Y,, [1]. Problems of this kind arise, for
example, in medicine [3], [4], in astrophysics [5] and so on.

As an estimator for A(x) we consider the following
statistic (see [6], [7])
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n i=1

jYiZV, v=12,

where K(x) is some distribution density satisfying the

requirements which we formulate in what follows, and
b, — 0 is a sequence of positive numbers.

We assume that kernel K (x)>0 is chosen so that it is a
function with finite variation and satisfies the conditions
K(x)=K(-x), K(x)=0 as [{>7>0, [K(x)dx=1.

The class of such functions is denoted by H (7).

Let ¢!V denotes the class of functions A(x), xe[0,1]
having bounded derivatives up to order i, i=1,2.

We also introduce the notation

T, =nb, J [ﬂm(x)—Eﬂin(x)}2 dx, Q,(r)=[zb,,1-7b,],

Q(7)

To=nb, [ [A(0)-2(x)] 4, (x)dx
Q ‘r)
Qij:'//n(Xl,XJ) v, (uv)= I K(Xb_UJK(Xb_V]dx,
Q,(7) n n
o7 = ZﬂkZ%Q.k, A=a(%), i=12,...n,
k=2 i=1
n 26i€Q;
i(j) rfbgo_njv 5i:Yi—ﬁ(Xi),

=0, & =0, k>n,

k-1
:an(kn)a k=2,,n1 g:fn)
i=1

Fk(“) =o(w: &,....&),

where Fk(") is the o -algebra generated by random variable

ElreerE s Fo(n) =(©,Q) (in what follows, for the sake of

and 7{" we will write & and

simplicity, instead of g‘,sn) i

Tij )-
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Lemma 1. The stochastic sequence (&,Fy),., is a

martingale-difference.

Lemma 2. Let K(x)eH(z) and A(x), 0<x<1, be
also a function with bounded variation. If nb, — oo, then

n —_— o —_— .
% Kw[xbx,ij{ybx.Jm(Xi)
i= n n

1
:iIKV1 ﬂ K2 u /Iva(u)du-ko i
b b, b, nb,

>

uniformly in x,y €[0,1], v; e NU{0}, 1=1,2,3.

Lemma 3. Let K(x)eH(zr) and ﬂ,(x)eC(l) If
nb? — oo , then
1

by'or >0 (2)=2[ 2% (x)dx |
0 ‘X‘SZT

K¢ (x)dx

and

Theorem 1. Let K(x)eH(r) and A(x)eC® If

nb? — oo, then

b, (fn _A(/i)) d
o(4)

N(0,2)

where A(1) and o(A) are defined as in Lemma 3 and

—9 5 denotes convergence in distribution, and N (0,1) isa
random variable having standard normal distribution cD(x) .

Theorem 2. Let K(x)eH(r) and /'L(X)GC(Z) .

Moreover, if nb? — e and nb} — 0, then

T,-A
b—1/2 n (1) d N(O,l)

toe(d)

The assertion of Theorem 2 allows us to construct the test
of asymptotic level «, 0 <a <1 for testing hypothesis Hy ,

according to which A(x)=4y(x), xeQ, (7). The critical
region is defined by the inequality

T 20, (a), 1)
Where
Ay (@) = A(4) + 2P0 (%)
A(%)= [ 20 (x)dx [ KZ(u)du,
02(,10):21202(x)dx K& (u)du,

and z, is defined by the equality ®(z,)=1-«.

Now let us investigate the asymptotic property of the test
(1) (i.e. the behavior of the power function as n — oo ). In first
place, we consider the question of whether the test is
consistent. The following assertion is true.

Theorem 3. Let all the conditions of Theorem 2 be
fulfilled. Thenas n — o«

I, (4) =Py {T, 2 q, (a)} >1
i.e. the test defined in (1) is consistent against any alternative

Hyt A(x)=25(x), 0<x<1

Thus for any fixed alternative the power of the test based
on T, tends to 1. However, if with a change of n the

alternative changes converging to the basic Hypothesis H, ,

then the power of the test will no longer necessarily converge
to 1. Let us consider, for example, the sequence of Pitmen-
type alternatives that are close to hypothesis H :

Hoo A" (%)= 2o (X)+ 700 (X)+0(7n ), 7 =0

Theorem 4. Let ﬂo(x),go(x)ec(z) and K(x)eH (7).
If b,=n", y,=nYZ* 14<5<1/2 , then statistic
b,Y? (T, —A(4))o ™ (4o) for alternative H, distributed in
limit normally with parameters

1t
{mgw (x)dx,lJ
i.e. the limiting power of the test is equal to
1%,
1—(1)[/10[—0(/10)!;0 (u)du)

Remark 1. It should be emphasized that the estimator
A (x) behaves worse near the boundary of the interval [0,1]




than in the interior interval [7b,,1-7b,] (see [8]). We

therefore consider the integral square deviation on Q, (7) in

order to avoid difficulties connected with this boundary effect;
however it can be shown that in the conditions of Theorems 1
and 2 the results obtained above are also valid for the modified

estimator (see [8], [9]) of the function A(x).

Remark 2. The idea of proof of Theorem 1 is analogous
of proof Theorem 1 from paper [10].

Remark 3. Let x; be the division points of the interval
2j-1

. j=1..
2n J

[0,1] chosen so that relation H (xj)z .n,

X
where H (x):jh(u)du, h(u) is some known continuous
0

distribution density on [0,1]. Then, arguing analogously to
the above, one can obtain a generalization of the results of this
paper.
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