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Abstract—The limiting distribution of the integral square 

deviation of kernel-type nonparametric estimator of Poisson 

regression function is established. The test of the hypothesis 

testing about Poisson regression function is constructed. The 

question of consistency of the constructed test is studied. The 

power asymptotic of the constructed test is also studied for 

certain types of close alternatives. 
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Let random variable Y  take values 0,1, 2,  with 
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Assume that the parameter   is the function of an 

independent variable  0,1x  , i.e.  
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( )x  is known as Poisson regression function (see [1], 

[2]). Let ix , 1,2, ,i n= , be the division points of the interval 

 0,1 : 

2 1
, 1,2, ,

2
i

i
x i n

n

−
= =

 

Let further iY , 1,2, ,i n= , be independent Poisson random 

variables with   ( )( ),i i iY k x k x= = P . The problem 

consists in estimating the function ( )x ,  0,1x  , by 

sample 1 2, , , nY Y Y  [1]. Problems of this kind arise, for 

example, in medicine [3], [4], in astrophysics [5] and so on. 

As an estimator for ( )x  we consider the following 

statistic (see [6], [7]) 
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where ( )K x  is some distribution density satisfying the 

requirements which we formulate in what follows, and 

0nb →  is a sequence of positive numbers. 

We assume that kernel ( ) 0K x   is chosen so that it is a 

function with finite variation and satisfies the conditions 

( ) ( )K x K x= − , ( ) 0K x =  as 0x   , ( ) 1K x dx = . 

The class of such functions is denoted by ( )H  . 

Let ( )i
C  denotes the class of functions ( )x ,  0,1x   

having bounded derivatives up to order i , 1, 2i = . 

We also introduce the notation 
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where 
( )n

kF  is the  -algebra generated by random variable 

1, , k  , 
( ) ( )0 ,
n

=  F  (in what follows, for the sake of 

simplicity, instead of 
( )n

k  and 
( )n

ij  we will write k  and   

ij ). 
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Lemma 1. The stochastic sequence ( )
1

,k k k



F  is a 

martingale-difference. 

Lemma 2. Let ( ) ( )K x H   and ( )x , 0 1x  , be 

also a function with bounded variation. If nnb →  , then 

( )31 2

1

1 n
i i

i
n n ni

x x y x
K K x

nb b b

  
=

   − −
   
   


 

( )31 2

1

0

1 1

n n n n

x u y u
K K u du O

b b b nb

  
     − −

= +     
     


 

uniformly in  , 0,1x y  ,  0i  N , 1,2,3i = . 

Lemma 3. Let ( ) ( )K x H  and ( ) ( )1
x C   If 
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Theorem 1. Let ( ) ( )K x H   and ( ) ( )1
x C   If 

2
nnb →  , then 
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where ( )  and ( )   are defined as in Lemma 3 and 

d
⎯⎯→  denotes convergence in distribution, and ( )0,1N  is a 

random variable having standard normal distribution ( )x . 

Theorem 2. Let ( ) ( )K x H  and ( ) ( )2
x C  . 

Moreover, if 2
nnb →   and 4 0nnb → , then 
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The assertion of Theorem 2 allows us to construct the test 

of asymptotic level  , 0 1   for testing hypothesis 0H , 

according to which ( ) ( )0x x = , ( )nx   . The critical 

region is defined by the inequality 

( )n nT q              () 

Where 
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and z  is defined by the equality ( ) 1z  = − . 

Now let us investigate the asymptotic property of the test 
(1) (i.e. the behavior of the power function as n →  ). In first 

place, we consider the question of whether the test is 
consistent. The following assertion is true. 

Theorem 3. Let all the conditions of Theorem 2 be 
fulfilled. Then as n →   

( ) ( ) 
1
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i.e. the test defined in (1) is consistent against any alternative 

( ) ( )1 0: , 0 1H x x x   
 

Thus for any fixed alternative the power of the test based 

on nT  tends to 1. However, if with a change of n  the 

alternative changes converging to the basic Hypothesis 0H , 

then the power of the test will no longer necessarily converge 
to 1. Let us consider, for example, the sequence of Pitmen-

type alternatives that are close to hypothesis 0H : 
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Theorem 4. Let ( ) ( ) ( )2
0 ,x x C    and ( ) ( )K x H  . 

If nb n −= , 1 2 4
n n  − += , 1 4 1 2  , then statistic 

( )( ) ( )1 2 1
0 0n nb T   − −−   for alternative 1H  distributed in 

limit normally with parameters 
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i.e. the limiting power of the test is equal to 
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Remark 1. It should be emphasized that the estimator 

( )ˆ
n x  behaves worse near the boundary of the interval  0,1  



 

 

than in the interior interval  ,1n nb b −  (see [8]). We 

therefore consider the integral square deviation on ( )n   in 

order to avoid difficulties connected with this boundary effect; 
however it can be shown that in the conditions of Theorems 1 
and 2 the results obtained above are also valid for the modified 

estimator (see [8], [9]) of the function ( )x . 

Remark 2. The idea of proof of Theorem 1 is analogous 
of proof Theorem 1 from paper [10]. 

Remark 3. Let ix  be the division points of the interval 

 0,1  chosen so that relation ( )
2 1

2
j

j
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n

−
= , 1, ,j n=  , 

where ( ) ( )
0

x

H x h u du=  , ( )h u  is some known continuous 

distribution density on  0,1 . Then, arguing analogously to 

the above, one can obtain a generalization of the results of this 
paper. 
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