Definition of the Probability Characteristic of the System from Given Region for Case ($2^{+}, 1^{-}$)

Rahila Sadigova
Cybernetics Institute of ANAS, Baku, Azerbaijan
rahilasadiqova@rambler.ru

Abstract

In this paper has been studied the process of semimarkovian random walk with jumps and two delaying screens. Tthe Laplace transformation of the distribution of a random variable $\tau(\omega)$ is obtained.

Keywords- process of semi-markovian random walk; the probability space; Laplas transformation

I. Introduction

Investigation of the ergodic distribution for semi-markovian random walk take process a special place in the theory of random processes. In 1975 V.Smit has proved the ergodic theorem for semi-markovian processes [1]. The general theorem about ergodic for processes with discrete intervention is proved in [2]. In [3] the ergodic theorem for complex semimarkovian processes with delaying screen is proved.

In [4] to find the Laplace transformation of the distribution for case $\left(1^{+}, 1^{-}\right)$of a random variable $\tau(\omega)$.

II. The Process Construction

Let the sequence $\left\{\xi_{k}, \eta_{k}\right\}_{k=\overline{1, \infty}}$, where $\xi_{k}, \eta_{k}, k=\overline{1, \infty}$, are independent identically distributed random variables and independent themselves, $\xi_{k}>0$ is given on the probability space $(\Omega, \mathfrak{I}, \mathrm{P}()$.$) .$

We construct the process [5]

$$
X_{1}(t)=\sum_{k=0}^{m-1} \eta_{k}, \text { if } \sum_{k=0}^{m-1} \xi_{k} \leq t<\sum_{k=0}^{m} \xi_{k}, \quad m=\overline{1, \infty}
$$

where $\eta_{0}=z \geq 0, \xi_{0}=0$.
We delay process $X_{1}(t)$ with screen in the zero (see [1]):

$$
X_{2}(t)=X_{1}(t)-\inf _{0 \leq s \leq 1}\left(0, X_{1}(s)\right)
$$

Then we delay this process with screen in $a(a>0)$:

$$
X(t)=X_{2}(t)-\sup _{0 \leq s \leq 1}\left(0, X_{2}(s)-a\right) .
$$

This process is called the process of semimarkov random walk with double delaying screens in the " a "end zero.

We introduce a random variable $\tau(\omega)$, meaning the duration of the time in which process $X(t)$ is in a region $(0, a)$.

III. The Finding Of The Laplace Transformation Of The Distribution Of A Random Variable $\tau(\omega)$

The purpose in this paper to find the Laplace transformation of the distribution of a random variable $\tau(\omega)$. We denote

$$
K(t \mid z)=\mathrm{P}\{\tau>t \mid X(0)=z\} .
$$

It is obvious, that

$$
\left.K(t \mid z)=\mathrm{P} \inf _{\leq \leq s t} X(s)>0 ; \sup _{0 \leq s \leq t} X(s)<a \mid X(0)=z\right\}
$$

On total probability form we have:

$$
\begin{align*}
& \left.K(t \mid z)=\mathrm{P} \inf _{b \leq s t} X(s)>0 ; \sup _{0 \leq s \leq t} X(s)<a ; \xi_{1}>t \mid X(0)=z\right\}+ \\
& +\mathrm{P}\left\{\inf _{0 \leq s \leq t} X(s)>0 ; \sup _{0 \leq s \leq t} X(s)<a ; \xi_{1}<t \mid X(0)=z\right\}= \\
& =\mathrm{P}\left\{\xi_{1}(\omega)>t\right\}+ \tag{1}\\
& +\int_{s=0}^{t} \int_{y=0}^{a} \mathrm{P}\left\{\xi_{1}(\omega) \in d s ; z+\eta_{1} \in d y\right\} \mathrm{P}\{\tau>t-s \mid X(0)=y\}
\end{align*}
$$

Then the equation (1) will be written in the following form:

$$
\begin{align*}
& K(t \mid z)=\mathrm{P}\left\{\xi_{1}(\omega)>t\right\}+ \\
& +\int_{s=0}^{t} \int_{y=0}^{a} \mathrm{P}\left\{\xi_{1}(\omega) \in d s\right\} d_{y} \mathrm{P}\left\{\eta_{1}<y-z\right\} K(t-s \mid y) \tag{2}
\end{align*}
$$

Let's denote:

$$
\begin{align*}
\tilde{K}(\theta \mid z)=\int_{t=0}^{\infty} e^{-\theta t} K(t \mid z) d t, \quad & \theta>0 \tag{3}\\
\varphi(\theta)=E e^{-\theta \xi_{1}}, & \theta>0
\end{align*}
$$

If to apply the Laplace transformation on both sides of the equation (1) with respect to t :
$\int_{t=0}^{\infty} e^{-\theta} \tilde{K}(t \mid z) d t=\int_{t=0}^{\infty} e^{-\theta t} \mathrm{P}\left\{\xi_{1}(\omega)>t\right\} d t+$
$+\int_{y=0}^{a} d_{y} \mathrm{P}\left\{\eta_{1}<y-z\right\} \int_{t=0}^{\infty} e^{-\theta t} \int_{s=0}^{t} \mathrm{P}\left\{\xi_{1}(\omega) \in d s\right\} K(t-s \mid y)=$
$=\frac{1-\varphi(\theta)}{\theta}+\varphi(\theta) \int_{y=0}^{a} \tilde{K}(\theta \mid y) d_{y} \mathrm{P}\left\{\eta_{1}<y-z\right\}$,
then we have the following equation for $\tilde{K}(\theta \mid z)$:
$\tilde{K}(\theta \mid z)=\frac{1-\varphi(\theta)}{\theta}+\varphi(\theta) \int_{y=0}^{a} \tilde{K}(\theta \mid y) d_{y} \mathrm{P}\left\{\eta_{1}<y-z\right\}$.
Let's solve this equation in the class for the Laplace distributions. For example, let

$$
\eta_{1}=\eta_{1}^{+}+\eta_{2}^{+}-\eta_{1}^{-}
$$

$F\left\{\eta_{1}<t\right\}= \begin{cases}\frac{\lambda^{2}}{(\lambda+\mu)^{2}} e^{\mu t}, & t<0, \\ 1-\frac{\mu}{\lambda+\mu}\left[1+\frac{\lambda}{\lambda+\mu}+\lambda t\right] e^{-\lambda t}, & t>0 .\end{cases}$
Hence we have

$$
p_{\eta_{1}}(t)=\left\{\begin{array}{r}
\frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{\mu t}, \quad t<0 \tag{6}\\
\frac{\lambda^{2} \mu}{\lambda+\mu}\left[\frac{1}{\lambda+\mu}+t\right] e^{-\lambda t}, t>0
\end{array}\right.
$$

and

$$
\begin{aligned}
& \tilde{K}(\theta \mid z)=\frac{1-\varphi(\theta)}{\theta}+\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{-\mu z} \int_{y=0}^{z} e^{\mu y} \tilde{K}(\theta \mid y) e^{\mu y} d y+ \\
& +\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{\lambda z} \int_{y=z}^{a} e^{-\lambda y} \tilde{K}(\theta \mid y) d y- \\
& -\varphi(\theta) \frac{\lambda^{2} \mu z}{\lambda+\mu} e^{-\lambda z} \int_{n=0}^{\phi} e^{-\lambda y} \tilde{K}(\theta \mid y) d y+ \\
& +\varphi(\theta) \frac{\lambda^{2} \mu}{\lambda+\mu} e^{\lambda z} \int_{y=z}^{a} e^{-\lambda y} y \tilde{K}(\theta \mid y) d y .
\end{aligned}
$$

We denote:

$$
\begin{gather*}
\int_{0}^{\infty} \mathrm{P}\{\tau>t \mid X(0)=z\} d t=E(\tau \mid X(0)=z) \\
\tilde{K}(\theta \mid z)=\int_{0}^{\infty} e^{\theta} \mathrm{P}\{\tau>t \mid X(0)=z\} d t \tag{8}
\end{gather*}
$$

$L(\theta \mid z)=1-\theta \tilde{K}(\theta \mid z)$.

We can write, the equation (8) in the following form using (7):
$L(\theta \mid z)=\varphi(\theta)-\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{-\mu z} \int_{y=0}^{z} e^{\mu y} d y+$
$+\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{-\mu \nu} \int_{y=0}^{2} e^{\mu y} L(\theta \mid y) e^{\mu \nu y} d y-$
$-\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{\lambda z} \int_{y=0}^{a} e^{-\lambda y} d y+$
$+\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{\lambda z} \int_{y=z}^{a} e^{-\lambda y} L(\theta \mid y) d y+\varphi(\theta) \frac{\lambda^{2} \mu z}{\lambda+\mu} e^{\lambda z} \int_{y=z}^{a} e^{-\lambda y} d y-$
$+\varphi(\theta) \frac{\lambda^{2} \mu z}{\lambda+\mu} e^{\lambda z} \int_{y=z}^{a} e^{-\lambda y} L(\theta \mid y) d y-\varphi(\theta) \frac{\lambda^{2} \mu}{\lambda+\mu} e^{\lambda z} \int_{y=z}^{a} e^{-\lambda y} y d y+$
$+\varphi(\theta) \frac{\lambda^{2} \mu}{\lambda+\mu} e^{\lambda z} \int_{y=z}^{a} e^{-\lambda y} y L(\theta \mid y) d y$.

From (9) we can receive the differential equation:
$L^{\prime \prime \prime}(\theta \mid z)-(2 \lambda-\mu) L^{\prime \prime}(\theta \mid z)+\lambda(\lambda-2 \mu) L^{\prime}(\theta \mid z)+$
$+\lambda^{2} \mu[1-\varphi(\theta)] L(\theta \mid z)=0$.
The characteristic equation of (10) will be in the following form

$$
\begin{equation*}
k^{3}(\theta)-(2 \lambda-\mu) k^{2}(\theta)+\lambda(\lambda-2 \mu) k(\theta)+\lambda^{2} \mu[1-\varphi(\theta)]=0 . \tag{11}
\end{equation*}
$$

Then the common solution of (10) will be

$$
\begin{equation*}
L(\theta \mid z)=\sum_{i=1}^{3} d_{i}(\theta) e^{k_{i}(\theta)} \tag{12}
\end{equation*}
$$

From (9) we can find the initial conditions for differential equation (10) :

$$
\left\{\begin{array}{l}
L(\theta \mid a)=\varphi(\theta)-\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{-\mu a} \int_{y=0}^{a} e^{\mu y} d y+ \tag{13}\\
+\varphi(\theta) \frac{\lambda^{2} \mu}{(\lambda+\mu)^{2}} e^{-\mu a} \int_{y=0}^{a} e^{\mu y} L(\theta \mid y) d y, \\
L^{\prime}(\theta \mid a)=\varphi(\theta) \frac{\lambda^{2} \mu^{2}}{(\lambda+\mu)^{2}} e^{-\mu a} \int_{y=0}^{a} e^{\mu y} d y- \\
-\varphi(\theta) \frac{\lambda^{2} \mu^{2}}{(\lambda+\mu)^{2}} e^{-\mu a} \int_{y=0}^{a} e^{\mu y} L(\theta \mid y) d y, \\
L^{\prime \prime}(\theta \mid a)=-\mu L^{\prime}(\theta \mid a) .
\end{array}\right.
$$

From (13) we can receive the following system of the linear algebraic equations for $d_{1}(\theta), d_{2}(\theta)$ and $d_{3}(\theta)$.

$$
\left\{\begin{array}{l}
{\left[\left[(\lambda+\mu)^{2}-\left(\mu+k_{2}(\theta)\right)\left(\mu+k_{3}(\theta)\right)\right] e^{k_{1}(\theta) a}+\right.} \\
\left.\left(\mu+k_{2}\right)\left(\mu+k_{3}\right) e^{\mu a}\right] d_{1}(\theta)+ \\
{\left[\left[(\lambda+\mu)^{2}-\left(\mu+k_{1}(\theta)\right)\left(\mu+k_{3}(\theta)\right)\right] e^{k_{2}(\theta) a}+\right.} \\
\left.+\left(\mu+k_{1}\right)\left(\mu+k_{3}\right) e^{\mu a}\right] d_{2}(\theta)+ \\
{\left[\left[(\lambda+\mu)^{2}-\left(\mu+k_{1}(\theta)\right)\left(\mu+k_{2}(\theta)\right)\right] e^{k_{3}(\theta) a}+\right.} \\
\left.+\left(\mu+k_{1}(\theta)\right)\left(\mu+k_{2}(\theta)\right) e^{\mu a}\right] d_{3}(\theta)= \\
=\varphi(\theta)\left(2 \lambda \mu+\mu^{2}-\lambda^{2} e^{-\mu a}\right), \\
{\left[\left[(\lambda+\mu)^{2} k_{1}(\theta)+\mu\left(\mu+k_{2}(\theta)\right)\left(\mu+k_{3}(\theta)\right)\right] e^{k_{1}(\theta) a}-\right.} \\
\left.-\mu\left(\mu+k_{2}\right)\left(\mu+k_{3}\right) e^{\mu a}\right] d_{1}(\theta)+ \tag{14}\\
{\left[\left[(\lambda+\mu)^{2} k_{2}(\theta)+\mu\left(\mu+k_{1}(\theta)\right)\left(\mu+k_{3}(\theta)\right)\right] e^{k_{2}(\theta) a}-\right.} \\
\left.-\mu\left(\mu+k_{1}\right)\left(\mu+k_{3}\right) e^{\mu a}\right] d_{2}(\theta)+ \\
{\left[\left[(\lambda+\mu)^{2} k_{3}(\theta)+\mu\left(\mu+k_{1}(\theta)\right)\left(\mu+k_{2}(\theta)\right)\right] e^{k_{3}(\theta) a}-\right.} \\
\left.-\mu\left(\mu+k_{1}\right)\left(\mu+k_{2}\right) e^{\mu a}\right] d_{3}(\theta)= \\
=\lambda^{2} \mu \varphi(\theta)\left(1-e^{-\mu a}\right), \\
\left(\mu+k_{1}(\theta)\right) k_{1}(\theta) e^{k_{1}(\theta) a}+\left(\mu+k_{2}(\theta)\right) k_{2}(\theta) e^{k_{2}(\theta) a}+ \\
+\left(\mu+k_{3}(\theta)\right) k_{3}(\theta) e^{k_{3}(\theta) a}=0 .
\end{array}\right.
$$

To find $d_{i}(\theta), i=\overline{1,3}$ we must find $d_{i}(0), i=\overline{1,3}$.
It is obvious, that

$$
\begin{aligned}
& L(\theta)=\int_{z=0}^{a} L(\theta \mid z) d P\left\{\min \left(a, \eta_{1}^{+}\right)<z\right\}= \\
& =\int_{z=0}^{a} L(\theta \mid z) d\left[1-P\left\{\min \left(a, \eta_{1}^{+}\right)>z\right\}\right]= \\
& =L(\theta \mid 0) P\left\{\eta_{1}^{+}>a\right\}-\int_{z=0}^{a} L(\theta \mid z) d_{z} P\left\{\eta_{1}^{+}>z\right\} \\
& L(\theta)=L(\theta \mid a)(1+\lambda a) e^{-\lambda a}+\lambda^{2} \int_{z=0}^{a} z e^{-\lambda z} L(\theta \mid z) d z
\end{aligned}
$$

For applications we find the expectation and variance of the distribution of the random variable $\tau(\omega)$. We know that

$$
E \tau(\omega)=L^{\prime}(0)
$$

From (15) we find that
$L^{\prime}(0)=-\frac{\lambda \mu a}{\lambda-2 \mu} \varphi^{\prime}(0) e^{-\lambda a}-\frac{2 \mu}{\lambda-2 \mu} \varphi^{\prime}(0) e^{-\lambda a}+\frac{2 \mu}{\lambda-2 \mu} \varphi^{\prime}(0)+\frac{2 \varphi^{\prime}(0)}{f_{1}} \times$
$\times\left\{\frac{1}{4(\lambda-2 \mu)}\left[(\lambda-\mu+b)\left(-\mu^{3}(2 \lambda+\mu+b)^{2}+4 \lambda^{4} \mu\right)+2 \lambda^{5}(2 \lambda-\mu-b)\right] e^{\frac{2 \lambda-3 \mu+b}{2} a}-\right.$
$-\frac{\lambda \mu(2 \lambda-\mu+b) a}{8(\lambda-2 \mu)}\left[\mu^{2}(2 \lambda+\mu+b)^{2}-4 \lambda^{4}\right] e^{\frac{2 \lambda-3 \mu+b a}{2}}+$
$+\frac{1}{4(\lambda-2 \mu)}\left[(\lambda-\mu-b)\left(\mu^{3}(2 \lambda+\mu-b)^{2}-4 \lambda^{4} \mu\right)-2 \lambda^{5}(2 \lambda-\mu-b)\right] e^{\frac{2 \lambda-3 \mu-b}{2} a}+$
$+\frac{\lambda \mu(2 \lambda-\mu-b) a}{8(\lambda-2 \mu)}\left[\mu^{2}(2 \lambda+\mu-b)^{2}-4 \lambda^{4}\right] e^{\frac{2 \lambda-3 \mu-b}{2}}+$
$+\left[\frac{\lambda^{2} \mu^{3}(\lambda+\mu+b)}{\lambda-2 \mu}+\frac{2 \lambda^{3} \mu^{4}(\lambda+\mu+b) a}{(\lambda-2 \mu)(\mu-b)}\right] e^{-\frac{3 \mu-b}{2} a}-$
$-\left[\frac{\lambda^{2} \mu^{3}(\lambda+\mu-b)}{\lambda-2 \mu}+\frac{2 \lambda^{3} \mu^{4}(\lambda+\mu-b) a}{(\lambda-2 \mu)(\mu+b)}\right] e^{-\frac{3 \mu+b}{2} a}-$
$\left.-\frac{\lambda \mu^{3}(2 \lambda+\mu) b}{\lambda-2 \mu} e^{-\mu a}-\left[\frac{\lambda^{3}\left(\lambda^{2}-3 \mu^{2}\right) b}{\lambda-2 \mu}+\lambda^{4} \mu a b-\lambda^{5} \mu a^{2} b\right] e^{(\lambda-2 \mu) a}\right\}$
We know that

$$
D \tau(\omega)=L^{\prime \prime}(0)-\left[L^{\prime}(0)\right]^{2} .
$$

The following fact is proved at $\lambda<2 \mu$:

$\lambda<2 \mu$	$E \tau(\omega)$
$a \rightarrow 0$	$-\varphi^{\prime}(0)>0$
$a \rightarrow \infty$	$\frac{2 \mu}{\lambda-2 \mu} \varphi^{\prime}(0)>0$

References

[1] B.L. Smit, "The renewall processes", // Mathematics, 1961, vol. №3б, p. 5.
[2] I.I. Gihman, A.V. Skorohod., "Theory of random processes", M., Nauka, 1973, vol.2, 639 p., in (Russian).
[3] T.H. Nasirova "Complex process of semimarkovian random walk with screen", B.:Science, 1988, 50 p., in (Russian).
[4] T.H Nasirova, R.H. Sadiqova, "The Laplas transformation of the distribution of the length of the time of the stay in given region", AVT, ISSN 0132-4160, Riga, 2009, No.4, pp.30-36.,in (Russian).
[5] A.A. Borovkov, "The stochastic process in the Queuing Theory", Moscow, Nauka, 1972, 368 p., in (Russian).

