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Abstract— In this paper has been studied the process of semi-

markovian random walk with jumps and two delaying screens.  

Tthe Laplace transformation of the distribution of a random 

variable )(  is obtained. 
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I.  INTRODUCTION  

Investigation of the ergodic distribution for semi-markovian 
random walk  take process a special place in the theory of 
random processes. In 1975 V.Smit has proved the ergodic 
theorem for semi-markovian  processes [1]. The general 
theorem about ergodic  for processes with discrete intervention 
is proved in [2]. In [3] the ergodic theorem for complex semi-
markovian processes with delaying screen is  proved. 

In [4] to find the Laplace transformation of the distribution 

for case )1,1(   of a random variable )( . 

II. THE PROCESS CONSTRUCTION  

Let the  sequence  
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,
kkk

  , where  ,1,, k
kk

 , are 

independent identically distributed random variables and 

independent themselves, 0
k

  is given on the probability 

space  (.),,   .  

We construct the process [5] 
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  z . 

We delay process )(
1

tX with screen in the zero (see [1]): 
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Then we delay this process with screen in )0( aa  : 
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This process is called the process of semimarkov random 
walk with double delaying screens in the “ a  ”end zero. 

We introduce a random variable )( , meaning the 

duration of the time in which process )(tX  is in a region 

),0( a . 

III. THE FINDING OF THE LAPLACE TRANSFORMATION OF 

THE DISTRIBUTION OF A RANDOM VARIABLE )(  

The purpose in this paper to find the Laplace 

transformation of the distribution of a random variable )( . 

We denote  

 zXtztK  )0()(  . 

It is obvious, that 
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On total probability form we have:  
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 Then the equation (1) will be written in the following form: 
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Let's denote: 
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0,)( 1 
  

Ee . 

If to apply the Laplace transformation on both sides of the 

equation (1) with respect to t : 
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then we have the following equation for )(
~

zK  : 
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Let's solve this equation in the class for the Laplace  
distributions. For example, let 
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Hence we have 
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and 
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We denote: 
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 We can write, the equation (8) in the following form using (7): 
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From (9) we can receive the differential equation: 
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The characteristic equation of (10) will be in the following 
form 
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Then the common solution  of  (10) will be 
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From (9) we can find the initial conditions for differential 
equation (10) : 
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From (13) we can receive the following system of the linear 

algebraic equations for )(),(
21
 dd and )(

3
d . 
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To find 3,1),( id
i
  we must find 3,1),0( id

i
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It is obvious, that 
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For applications we find the expectation and variance of the 

distribution of the random  variable )( . We know that 
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From (15) we find that 
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We know that  

2)]0([)0()( LLD  . 

The following fact is proved  at  2 :  
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