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Abstract—On the sequence of the independent, equal 

distributed and the positive random variables the process of 

the semi-markovian random walk with negative drift, positive 

jumps and with the positive delaying screen is constructed. In 

the case, when the random walk has the complex Laplace 

distribution, the evident form of Laplace transformation of the 

distribution of the first moment of reaching of the positive 

delaying screen with this process is found. 
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duration of the drift; the size of jump. 

 

I.  INTRODUCTION 

 To the finding of distribution of the first moment 
reaching of the positive level many papers [1], [2], [3], [4] 
and etc. are devoted. In these papers asymptotic forms are 
obtained. But the evident form of the Laplace transformation 
of the distribution of the first moment reaching the positive 
delaying screen with the process semi-markovian random 
walk with negative drift and positive jumps in the case, if the 
random walk has the complex Laplace distribution in this 
paper is obtained. 

II.  SOLUTION OF THE PROBLEM   

 Let the sequence of the independent identically 

distributed and positive random variables 
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are given on the probability space ))(,,(  P  

 We construct the following process [5]: 
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 This process we delay with screen in )0( aa : 
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 Our aim to find the evident form of ),(L when 

)(
1
  and )(

1
 have the Erlang- n  distribution of the any 

order and exponential distributions with parameters   and 

  accordingly. 

III. THE CONSTRUCTION OF THE INTEGRAL EQUATION 

FOR )/( zL   

 Let .0),0(  zX   

Theorem. The Laplace transformation of the condition 

distribution of the random variable  )(
1
 a satisfies the 

following integral equation 
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If the random variables )(
1
 and )(

1
  have the 

absolute-continuous distributions, then  
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Proof.  It  is obvious 
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Then we have 
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 Second part of the theorem is obvious. 

 The theorem is proved. 

IV. THE SOLUTION OF THE INTEGRAL EQUATION (1) 

 This equation we shall decide in the case, when the 
random walk has the complex Laplace distribution. The 
complex Laplace distribution we shall call the following 
distribution: 
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distributions with parameters 


 and   accordingly. Then 

equation (1) has the following form 
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 From equation (2) we have the following integro-
differential equation 
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 We find the m  derivation of (3) equality 


 

)./(

)()/()/(

)(

)()()1(

0

zLe

ezLzLC

zm

zimiii

m

m

i


























 

 From (4) we have differential equation 
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with characteristic equation  
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where  mik
i

,1),( are the roots of the characteristic 

equation (5), with boundary conditions  



 

 

 

 

                                                                                                                                     Baku, Azerbaijan 

IV International Conference “Problems of Cybernetics and Informatics” (PCI'2012), September 12-14, 2012 
www.pci2012.science.az/6/16.pdf 

 

3 

 

 












































































































































.)/(

)()0/()0/(

...............................................................................

,)/(
))!1((

)1(

)()0/()0/(

............................................................................

,)/(
)!1(

)1(

)0/()0/(

,)/(
)!1(

)(
)0/(

)(

0

1)()1(

1

1

0

)(

0

)1(

)()1(

0

)(

0

1

0

)(1

dxxLe

LLC

dxxLex
km

LLC

dxxLex
m

LL

dxdsxxLees
m

e
L

x

x

m

imiii

m

m

i

x

x

km

mkm

ikiii

k

k

i

x

x

m

m

m

a

sx

x

s

sm

m

m

am

































 

If take into consideration the common solution, we have 
the system of the linear algebraic equations. After some 
complex transformation this system reduced to one equation. 
Only in the solution 
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(6) will be the Laplace transformation of the distribution 

of the random variable ).(
1
 a   

        Then we have 
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         According to form of the total probability for 
expected value we have 
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From (7) we have 
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