
 

 

 

 

                                                                                                                                     Baku, Azerbaijan 

IV International Conference “Problems of Cybernetics and Informatics” (PCI'2012), September 12-14, 2012 
www.pci2012.science.az/6/15.pdf 

 

1 

Asymptotic Properties of the Branching Processes 

with State – Dependent Immigrations  

Jakhongir Azimov  

Institute of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan  

jakhongir20@rambler.ru 

 

 
Abstract— We consider the branching processes with state-

dependent immigration and limit theorems for such processes. 

Assume that the intensity of the immigration decreases tending to 

0, when the number of descendent increases.  
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I.  INTRODUCTION 

We assume that: 

a) { ; 1,2,..., 0,1,...}inX X i n    

is a set of  independent and identically distributed (i.i.d.) 
random variables with probability generating function (g.f.) 
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b) { ; 0,1,...}nY Y n  is (independent of X ) set of 

independent random variables with probability g.f.: 
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We define the branching random process 
0{ }n nZ 


 as 

follows: 
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where 
0

1

0,
i

   and { 0}nZI   – is indicator.   

Suppose, that   

1( ) (1 ) (1 ),F s s s L s                      (1) 

where 0 1   and L(s)  is a slowly varying function 

(s.v.f.) as 0.s   

It is known [1], that under the condition 0 (0) 1F   there 

exists stationary measure for the Galton – Watson process, g.f. 

( )U s  of which  is analytic in the circle | |s q  (q-probability 

of degeneration) and in the case ( (0)) 1U F   the following 

Abel’s functional equation holds: 

( ( )) 1 ( ), | | , (1) .U F s U s s q U     

Observe, that  (1) implies (see [2])  

               

 

 

         From the asymptotic relation (2) follows, that the  

inverse function  of (1 )U x  has the following form  
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where ( )N x  is a s.v.f. as  x  such that  

1/( ) ( ( )) 1N x L x N x    . 

 

II. MAIN RESULTS 

Denote  
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where  0 1( ) , ( ) ( )n nF s s F s F F s  . 

 We suppose that   
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Introduce the function   
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We consider the case of ( )M n M   as .n  

Theorem 1. Assume that  
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 where 0r   and ( )l n  is a s.v.f. as n , if     0r   

then ( ) (1), ,l n o n   

and  

1

2

( )

( )
n

Q n

Q n
    as n . 

Then the following limits are finite  
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Theorem 2. Let conditions of Theorem 1 hold and 
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