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The main purpose of this paper is to determine the spectrum of a new generalized difference 
operator, denoted by ,a bΔ , over the sequence space c0. The norm of the operator ,a bΔ  on the 
sequence space c0 has been found. The results of this paper generalize the corresponding 
results of [3], [4] and [7]. 

1. Introduction  

By B(X), we denote the set of all bounded linear operators on the Banach space X into 
itself. Let X ≠ ∅  be a complex normed space and consider a linear operator  :  ( )T D T X→ , 
with domain ( ) .D T X⊆  With T we associate the operator  

   λ λ= −T T I , 
where λ is a complex number and I is the identity operator on ( )D T . By a regular value λ of T 
we mean a complex number such that 
(R1) 1

λ
−T  exists, 

(R2) 1
λ
−T  is bounded, 

(R3) 1
λ
−T  is defined on a set which is dense in X. 

The resolvent set of T, denoted by ρ(T, X),  is the set of all regular values λ of T. Its 
compliment σ(T, X) =  \ ρ(T, X) in the complex plane  is called the spectrum of T. 
Furthermore, the spectrum σ(T, X) is partitioned into three disjoint sets as follows: 

The point (discrete) spectrum σp(T, X) is the set such that 1
λ
−T  does not exist. Any such  

λ ∈ σp(T, X) is called an eigenvalue of T. 

The continuous spectrum σc(T, X) is the set such that 1
λ
−T  exists and satisfies (R3) but 

not (R2), that is 1
λ
−T  is unbounded. 

The residual spectrum σr(T, X) is the set such that 1
λ
−T  exists (and may be bounded or 

not) but not satisfy (R3), that is the domain of 1
λ
−T  is not dense in X. 

We summarize the knowledge in the existing literature concerning with the 
spectrum of the linear operator defined by some particular limitation matrices over some 
sequence spaces. The fine spectrum of the difference operator Δ over the sequence space lp, 
( 1)p ≥  is determined by A. Akhmedov and F. Başar [1] and over the sequence space c0 and 
c by B. Altay and F. Başar [3]. B. De Malafosse [6] computed the spectrum of the 
difference operator on the space sr. A. Akhmedov and F. Başar [2] determined the fine 
spectrum of the difference operator on the space bvp, (1 )p≤ < ∞ . Note that the sequence 
space bvp was introduced and studied by B. Altay and F. Başar [5]. The continuous dual of 
bvp determined by A. Akhmedov in [2].  

We introduce the generalized difference operator Δa,b on the sequence space c0 as 
follows:  
 , :   a b o oc cΔ →  is defined by, 
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, , 1 1 0 1 1( ) ( ) with   0, 0a b a b n n n n n nx x b x a x x b∞
− − = − −Δ = Δ = + = =  

where (an) and (bn) are two sequences of nonzero real numbers such that:  

lim , sup , lim 0, sup , for alln n n n n nn nn n
a a a A b b b B and a a b a a b n

→∞ →∞
= = = ≠ = ≠ + ≠ − ∈ . 

Lemma 1. ( [8, pp. 129]). The matrix A = (ank) gives rise to a bounded linear operator 
( )0  T B c∈  from c0 to itself if and only if 

(1) the rows of A in l1  and their l1  norms are bounded, 
(2) the columns of A are in c0. 
The operator norm of T is the supremum of the l1 norms of the rows. 

In this paper we determine the spectrum of the generalized difference operator Δa,b  
on the sequence space c0. The results of our paper not only generalize the corresponding 
results of [3], [4] and [7] but also give results for some more operators.  

2. The spectrum of the operator ,a bΔ  on the sequence space c0 

In this section, we establish the boundedness of the operator ,a bΔ  on c0. Also, we 
compute the spectrum and the point spectrum of the operator ,a bΔ  on the sequence space c0. 

Theorem 1. , 0( )a b B cΔ ∈ with a norm 
0

, 1sup( )a b k kc k
a b −Δ = + . 

Proof.   Proof is simple. So we omit it.                                                                                  

By , 0( , )a b cσ Δ  we denote the spectrum of ,a bΔ . The main result of this paper is 

Theorem 2.  Denote the set { }:λ λ∈ − ≤a b  by D and the set { }: ∉k ka a D  by E. Then 

, 0( , )a b c D Eσ Δ = ∪ . 

Proof.   Let D Eλ∉ ∪  and let 0( )ky y c= ∈ . Then and , for allka b a kλ λ− > ≠ ∈ . By 
solving the equation ,( )a b I x yλΔ − = , for ( )kx x= in terms of y, we get 

 
0 1 1 1

0 1
0 1 1

( 1) ... 1... ,
( )( )...( ) ( )( ) ( )

k
k k

k k k
k k k k

b b b bx y y y k
a a a a a aλ λ λ λ λ λ

− −
−

−

−
= + − + ∈

− − − − − −
 

Then,  

 ( )

0

0
1

0 1 1,

0 1 1

0 1 2 1 2 2

1 0 0
( )

1 0
( )( ) ( )=( )= 

1
( )( )( ) ( )( ) ( )

a b nk

a
b

a a aI s
b b b

a a a a a a

λ

λ λ λλ

λ λ λ λ λ λ

−

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟− − −Δ − ⎜ ⎟
⎜ ⎟−
⎜ ⎟

− − − − − −⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

L

M M M O

 

Let 
0

n nk
k

S s
∞

=

=∑ . Clearly, for each n∈ , the series nS  is convergent since it is finite. Next, we 

prove that nsup S  is finite. 
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Since lim 1.k

k
k

b b
q

a aλ λ→∞
= = <

− −
 Then there exists 0k ∈ and q0 < 1 such that 

0 1k

k

b
q

a λ
< <

−
 for all 0 1k k≥ + . Then, for each n∈ , we can prove that  

( ) ( )0 12 2
0 0 0 0 0

0

1 1 11 ... 1 ... .
1

n k
n

n n n

AS A q q q A q q
a a q aλ λ λ

− −≤ + + + + ≤ + + + =
− − − −

, where 

{ }
00

max ,ii k
A m

≤ ≤
= 01

0
1

...
, 0,1,2,...,

...
o

i i k
i

i i k

b b b
m i k

a a aλ λ λ
+

+

= =
− − −

. But, for large n, we have 

1
1 1

n

q
a bλ

< <
−

, and so 1

01n
AqS

q
≤

−
. Thus nsup S < ∞ . 

Now it is easy to prove that lim 0,nkn
s

→∞
= for all k∈  and so the columns of 

( ) 1
,a b Iλ

−
Δ −  are in c0. Then, from Lemma 1, we have 1

, 0( ) ( )a b I B cλ −Δ − ∈  and so 

, 0( , )a b cλ σ∉ Δ . Thus , 0( , )a b c D Eσ Δ ⊆ ∪  

Conversely, let , 0( , )a b cλ σ∉ Δ . Then 1
, 0( ) ( )a b I B cλ −Δ − ∈ and hence 1

, 1( )a b I eλ −Δ −  
existed in c0, where 1e  is the unit sequence (1, 0, 0, 0, …). Then we can easily see that 

1

lim 1k

k
k

b b
a aλ λ→∞

+

= ≤
− −

 and ,for allka kλ ≠ ∈ . Then { } , 0: ( , )a ba b cλ λ σ∈ − < ⊆ Δ  

{ } , 0and : ( , )k a ba k cσ∈ ⊆ Δ . But, , 0( , )a b cσ Δ  is a compact set, and so it is closed. Then 

{ }:D a bλ λ= ∈ − ≤ ( , )cνσ⊆ Δ  and { } , 0: ( , )k k a bE a a D cσ= ∉ ⊆ Δ . This completes the 
proof.                                                                                                                                               
 

 The point spectrum of the operator ,a bΔ  is given by the following theorem 

Theorem 3. , 0

, : ,
( , )

,
i j

p a b

E if there exists m a a i j m
c

otherwise
σ

∈ ≠ ∀ ≥⎧
Δ = ⎨

∅⎩
  

Proof.   Consider the equation ,a b x xλΔ =  for (0,0,0,...)x θ≠ =  in c0. Then  

0 0( ) 0a xλ− =  and 1 1( ) 0k k k ka x b xλ − −− + = , for all 1,2,3,...k = . 

Hence, for all { }:ka kλ∉ ∈ , we have 0kx = ,for all k∈ , which is a contradiction. So, 

, 0( , )p a b cλ σ∉ Δ . This shows that { }, 0( , ) :p a b kc a kσ Δ ⊆ ∈ . 

 Now, if iaλ =  and there exists j∈ , j i>  such that i ja a= , then we can easily see 
that 0kx =  for all <k j . Then we have the following cases: 

Case (i): Let (ak) is such that for all ,i ja a i j≠ ∈  and let, 0aλ = . If 0 0x = , then 0kx =  for 

all k∈  and so we have a contradiction as x θ≠ . Also, if 0 0≠x  then 1
1 0

k
k k

k

bx x
a a+

+

−
=

−
 for 

all 0,1,2, ...k = , and hence  
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1lim k

k
k o

x b
x a a
+

→∞
=

−
. 

But 1
o

b
a a

≠
−

, since 0 0,a a b a a b≠ + ≠ − . Then, 0x c∈  if and only if 0a a b− > . Then 

0 , 0( , )p a ba cσ∈ Δ  if and only if 0a a b− > . 

 Similarly, we can prove that , 0( , )k p a ba cσ∈ Δ  if and only if ka a b− > . Thus 

, 0( , )p a b c Eσ Δ =  in this case. 

Case (ii): If (ak) is such that there exists m∈  with for all ,i ja a i j m≠ ≥ , then we can prove, 

as in Case (i), that , 0( , )k p a ba cσ∈ Δ  if and only if ka a b− > . Thus , 0( , )p a b c Eσ Δ = . 

Case (iii): If (ak) is not as in Case (i) or Case (ii), that is for all m∈  there exists 
andi m j m< ≥  such that i ja a= , then we must have x θ=  which is a contradiction. Thus 

, 0( , )p a b cσ Δ =∅  in this case.  

This completes the proof.                                                                                                     
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