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Let's consider the following  coefficient inverse problem in general setting: 
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where ( )* ,  
kik p i ia A fϕ ξ′= − , 

kk pb Iδ= , 1,2, , .k m= K                                                                (2)  
*

kpϕ  is a solution of adjoint integral  transport equation in spherical atmosphere, iA  are known 

operators, iξ  are known functions, f ′  is known solution of perturbed integral  transport 
equation in spherical atmosphere, ,   1,2, ,i i nα = K  is a set of unknown parameters 
(coefficients), iδα  is a perturbation of operator iα , i i iα α δα′ = + , 

kpI is a functional (integral) 
which depends on radiation intensity, 

kpIδ  is a perturbation of 
kpI , p p pI I Iδ′ = + . [1], [2]. 

  Let f Kf ψ= +  is an integral  transport equation in spherical atmosphere. As functionals 
of the problem we consider readouts of devices, that measures a radiation intensity 
                                                ( ) ( )0p

D

I f f d dξ δ
ΔΩ

= ⋅ ⋅ −∫ ∫ r r r Ω ,  

here ξ  is known instrument function.  

 Let consider  optical thicknesses ( ) ( )
0

,  ,  ,  
kl

i n k n kl dlτ λ σ λ= +∫r r r ω  as unknown 

parameters  in different atmospheric layers and assume, that they are constants in indicated 
layers, where ( ) /k k n k n= − −ω r r r r  is an optical path length from nr  to kr .   
 So, it's required to find ≡σ τ , ( )1, , nσ σ=σ K . Suppose that a radiation is 
monochromatic. Expanding ( )f Kfδ −  as a Taylor's series on σ  near the 0σ  point, we have  
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In this case system (1)  with coefficients (2) has a form:  
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I Iδσ δ
σ=

∂
= −

∂∑  or  

                                                    δ =A σ b .                                                                                 (4)  
Obtained system (4) is inconsistent ( )m n> , and we'll look for the most appropriate values for 

unknown quantities iδσ . From the theory of the least squares, if we minimize  2 2δ ε− =A σ b , 
then we'll have a system of  normal equations  
     * *δ =A A σ A b .                                                                         (5) 
 Let's demand normal distribution for errors in measurement of pI  with a small difference 
between each other. Otherwise we can bring in statistical weights. Thereto, equations can be 
multiplied by quantities, that are inversely proportional to mean-square deviations of measured 
quantities. As far as relative mean-square deviations of functional estimates usually don't 
change strongly, then we can use also values of functionals as statistical weights;   
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                                                   * *δ =A WA σ A Wb .                                                                 (6)  
System of linear equations (6) can be solved with any of known methods.  
 In many cases system (6) turns out ill-conditioned, therefore in order to solve it, 
regularization methods by A.N. Tihonov should be applied [3]. The main idea of this method 
consists in minimization of the following expression:  
    ( )* * ,  δ γ δ δ ε− + ⋅ Ω =A WA σ A Wb σ σ ,  

where Ω  is an matrix approximation for   
10

( )
H km

k k
k

dq x dx
dx
σ

=
∑∫ .  

 Here H is a height of atmosphere, ( ) 0kq x > . The last expression means that additional 
constraints imposed to the class of solutions. Usually 1,   ( ) 1kk q x= ≡ . It means that limited 
derivative of the solution, ( )xδσ , is required. Regularization coefficient γ  can be found 
approximately. In [4] the following value is presented:   

      
( ),  

nγ
δ δ

=
Ωσ σ

.                                                               (7) 

Where n  is a number of dimensions.  But as γ  depends on unknown solution, it's offered to 

take the right-hand sides of (6) instead of δσ  in (7). Then, we have 
( )* *,  

nγ =
ΩA Wb A Wb

.  

  For estimation of functional ( ) ( ) ( ) ( )
0

, ,i

iX

I f f d Kϕ ϕ ϕ ψ ϕ
∞

=

= = =∑∫ x x x  and its derivative 

the algorithm of dependent tests of Monte Carlo methods is usually used. It follows that for 
estimation of Iϕ  by Monte Carlo methods it is required to average the sums of ( )ϕ x evaluated 
from collisions with different order. The algorithm of dependent tests for transport theory 
problems consists in modeling of particles' trajectories in different systems by the same 
trajectories. Arising displacements are eliminated with special weight coefficients. Let λ  is a 
wavelength and parameter of the system, that is ( ) ( ), , ,k k λ′ ′=x x x x , ( ) ( ), λϕ ϕ λ ϕ= =x x . 
Then trajectories constructed for 0λ λ=  can be applied for estimates of Iϕ  if after each passage  

′→x x  auxiliary weight of particle is multiplied by ( )
( )0

, ,
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k
k

λ
λ
′
′
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 Now we'll show how to calculate k
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 in (4). Let ( )k kI I t=  depends on some parameter  

t . Then  
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 Suppose that the last series can be termwise differentiated and differentiation can be done 
under the integral signs with corresponding dimensions. Then formally:  
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where ( ) ( ) ( )1
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 For ( ),  ,  i n kt τ λ= r r  it can be shown that obtained series after differentiation under the 
integral sign has a absolutely convergent majorant , independent on ( ),  ,  i n kτ λr r .  
 Derivatives are evaluated from local estimate with the following physics characteristics: 

( ),aσ λr is a scattering aerosol cross-section with  indicatrix  ( ), ,ag μ λr , ( ),mσ λr  is a 
scattering aerosol cross-section with  indicatrix   ( ), ,mg μ λr , ( ),cσ λr   is an absorption cross-
section, ( ),μ ′ω ω  is a cosine of angle between the previous and next particle's directions in 
collision point, ( ) ( ) ( ), , ,a mσ λ σ λ σ λ= +r r r  is a total cross-section, 

( ) ( ) ( ) ( ) ( )
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, , , , , ,
, ,

,
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g g
g

μ λ σ λ μ λ σ λ
μ λ
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+
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r r r r
r

r r r
 is a  full indicatrix, 

( ) ( )
0

, , , ,
kl

n k n kl dlτ λ σ λ= +∫r r r ω  ( ) /k k n k n= − −ω r r r r  is an optical path length from nr  to kr .  

 In this case, in order to estimate the radiation intensity integral on the directions in the 
given  point *r  we use  
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( )1,i i iμ −= ω ω . Then ( ) ( )*

0
( ) , ,

N

k n n k n
n

I Qλ λ ϕ λ
=

= ∑E r r . Now let divide the atmosphere into  

in layers and assume that in each of them the optical thickness is constant. Assuming that  
( ),  ,  i n kt τ λ= r r , ( )(0)

0 ,  ,  i n kt τ λ= r r , 0, , 1ii n= −K  we can evaluate optical thickness 
coefficient derivatives. It can be shown to be true that series (8) can be differentiated. It's also 
can be shown the truthfulness of the estimate: 
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, где (0)

i i iτ τ τ= −% .  

Some questions related with solving inverse coefficient problems with respect to full cross-
section can be found in [5]. 
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