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 The processes in saturated porous media are on the base of many natural phenoma. Their 
study is related with many practical problems of undergroud and surface constraction. The 
results of these investigations are also widely claimed in mining, development and operation of 
oil and gas deposits. 
 In practice, in great majority of cases we have to do with complicated problems related 
with fluid filtration in complicated rheology porous medium. The experiments on geomaterials 
show that in different levels of stresses and temperatures after attaining the limit of elasticity, 
there arises irreversible internal microdestruction in rocks. Growth of creep flow is obseved. 
This makes necessary to take into account hereditary factors in hydrodynamical calculations. 
Today, there are works on account of history and prehistory of loading on deformation process, 
filtration process and porousity growth process. A number of simpliest problems on studying 
the simpliest non-stationary one-dimensional filtration flows were considered, and hydrodyna-
mic analysis of peculiarities of development of oil pools possessing viscoelastic properties are 
carried out. Various methodts of not in equilibrium filtration – relaxational filtration taking into 
account both not in equilibrium character of the filtration law and relaxational properties of 
porosity are suggested. In the present paper, mathematical problems on one-dimensional filtra-
tional flow for nonlinear-relaxational porosity model and hereditary character of Darcy filtration 
law are formulated. Fulfilment of the rest conditions are assumed: i.e. pressure, porosity and 
density are constant and equal their initial values.  

Write the known law of conservation of mass in the form used in the papers [4, 5]: 
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Here, m  is a porosity factor, ρ  is fluid’s density, w  is a filtration flow rate. Relation (1) holds 
under availability of sources or flow interior to the formation. Furthermore, the product mρ  
defines the mass of fluid in a unit volume, ),( txf  is mass flow rate in a time unit in the 
availability of flows and sources.  

In the place of determining relation connecting the filtration rate w  with pressure 
gradient, we accept the hereditary model used in [5]: 
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Here we use the denotation 0),(),( pxtxtP −=P  that determines pressure increment with 
respect to its initial value. The permeability factor is assumed to be constant. 
 In the place of a porosity model we take a hereditary model that takes into account 
dependence of porosity on the pressure change history [3], but with correction for nonlinearity  
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Here 0m  is initial porosity, n  is a nonlinearity index. 
 Assume that the functional dependence of density on pressure is known   
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)(Pρρ = .                                                                (4) 
 For weakly compressible fluid we expand this dependence in Taylor’s series in the 
vicinity of the initial value of pressure, retain only a linear term in the expansion and get the 
following formula: 

)1(0 Pραρρ += .                                                          (5) 
Here and in the last formulae we accepted the following denotation: 0k  is a constant coefficient 
of permeability velocity, 0μ  is viscosity factor, mα  is compressibility rate of a porous medium, 

ρα  is fluid’s compressibility rate coefficient; )(tH  is filtration rate relaxation kernel; )(tE  is a 
porosity relaxation kernel. 
 Represent equation (1) in the form: 

),( txfx
w

t
mwxmt =⎟

⎠
⎞⎜

⎝
⎛

∂
∂+

∂
∂+

∂
∂+

∂
∂ ρρρ .                                         (6) 

Allowing for dependence (4), we find 
,)(/;)(/ xt PPxPPt ′⋅′=∂∂′⋅′=∂∂ ρρρρ                                     (7) 

where xPPtPP xt ∂∂=′∂∂=′ /;/ . 
 Allowing for (7), equation (6) will be 

),()())(( txfwmPwPmP xtxt =′+′+′+′′ ρρ .                                     (8) 
Substitute formulae (2) and (3) into (8) and find: 
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Assume that the porosity relaxation kernel )(tE  is regular, then we have:  
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Allowing for this equation, (9) will take the form 
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Carry out regrouping in (11): 
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 Further, for the dependence (4) we accept the form (5). We will assume that the 
coefficient ρα  and mα  are small. Substituting (5) into (12) and rejecting the addends from the 
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coefficients ρα  and mα , we get  
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Accept the denotation: 
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Then (13) is written in the form: 
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Solve this equation with respect to the pressure increment function ),( xtP : 
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Write it in the form: 
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Taking into account smallness of the coefficients ρα  and mα  and assuming that their smallness 
order are same, expand (17) in series in the vicinity of a unit and retain only the linear terms 
with respect to these coefficients and get 
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Accept the following denotation: 
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Within these denotation we can write (18) as the following nonlinear Volterra equation with 
respect to the pressure increment function: 

⎮⌡
⌠ ′′−′=
t

xxt dPPxtKPxtAxtP
0

),,,,(),,(),( ττ .                                   (21) 

Let’s consider the numerical solution of equation (21). To that end, we partition the 
domain of definition of the function ),( xtP  on the squares by means of the following points: 
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here, h<0  is an integration step. For calculating the  derivatives we use the following schemes: 
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Then, from (21) we get 
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Using the results from [6] and [7], we can write: 
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where 11 ++ << nnn tt ξ . To the calculation of the integrals we apply the Euler implicit and 
explicit methods, respectively. As a result, we get a system of difference equations. After 
solving this system we found approximate values of the solution of equation (1). In one variant, 
the mentioned system of difference equations of the form: 
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