
 

 

The Third International Conference “Problems of Cybernetics and Informatics”, September 6-8, 
2010, Baku, Azerbaijan. Section #7 “Numerical Methods and Computational Technology” 

www.pci2010.science.az/7/16.pdf 
 

300

CONSTRUCTION OF A SECOND DERIVATIVE ONE-STEP METHOD OF FOURTH 
ORDER ACCURACY AND ITS APPLICATION TO THE SOLUTION OF VOLTERRA 

INTEGRAL EQUATION OF SECOND KIND 
 

Natavan Bayramova1, Galina Mehdiyeva2, Vagif Ibrahimov3 

 

Baku State University, Baku, Azerbaijan 
1imn_bsu@mail.ru, 2,3ibvag@yahoo.com 

 
There exists a wide class of approximate methods for solving Volterra integral equations. 

However a numerical method that could provide reliability of the obtained results or regularity 
of the volume of calculation works at each integration step has not been built up to now. 
Therefore more often there arises a necessity to construct numerical methods having wide range 
of stability and possessing some properties of the solution of the initial problem. Unlike the 
known papers, here we suggest a specific method that provides regularity of the number of 
inversions to calculation of the integral’s kernel. 

Introduction. 
Consider the following second kind Volterra integral equation: 

                 ( ) ( ) ( )( )dssysxkxfxy
x

x
∫+=

0

,, ,        Xxx ≤≤0                                  (1) 

that sometimes is called Volter-Uruson type integral equation. 
Investigation of variable boundary integral equations begins with Abel’s known paper. 

Since then many scientists are engaged in finding approximate solutions of equation (1) taking 
into account that to find the exact solution of equation (1) is not always succeeded even in the 
linear case. 

Recently the numerical solution of equation (1) is mostly investigated. Usually in 
constructing a numerical method for solving equation (1) mainly the quadrature methods are 
used. However, after applying the quadrature formula to the solution of equation (1), we get a 
variable boundary integral sum. While using this sum, the volume of computational works 
increases when passing from the moving partition point to the next one. Here we construct one 
specific method that provides constant number of calculations of the integral’s kernel at each 
step. 

Assume that equation (1) has a unique continuous solution determined on the segment 
[ ]Xx ,0 . For finding the numerical solution to equation (1), we partition the segment [ ]Xx ,0  
into N  equal parts by means of the constant step 0>h  and determine the partitioning points in 
the form: mhxxm += 0   ),...,2,1,0( Nm = . Denote the approximate values of the solution of 
equation (1) at the points mx  by my , the exact values by ( )mxy . Consider the construction of the 
numerical method for solving equation (1). 

§ 1. Construction of the fourth degree one-step method. 
Many papers have been devoted to the numerical solution of a nonlinear integral equation 

of type (1). In these papers the quadratures method or its modifications (see [1]) are mostly 
investigated. Showing some deficiencies of the quadratures method, the multi-step methods 
with constant coefficients for the solution of equation (1) were constructed and investigated in 
[2]. However in all these papers, those methods are used in which only calculation of the 
integral’s kernel are investigated. Here we suggest a method where calculation of the integral’s 
kernel and its first partial derivatives is used. It is easy to see that if the integral’s kernel, the 
function ( )zyxk ,, , is independent on x , the finding of the solution of equation (1) will be 
equivalent to finding of the Cauchy problem for first order ordinary differential equations. 
Therefore, the method constructed in this report is called a second derivative method. To this 
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end, apply the quadrature method to the solution of equation (1) and write it at the point 1+nx . 
Then, we have:  

                   ( ) ( )( )dssysxkfxy
nx

x
nnn ∫

+

+++ +=
1

0

,,111 ,                                         (1.1) 

where  ( )mm xff =  ( )Nm ,...,1,0= . 
Consider the difference ( ) ( )nn xyxy −+1 . Then we get: 

( ) ( )nn xyxy −+1 −= +1nf ( )( ) ( )( )dssysxkdssysxkf
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Applying the Lagrange theorem to the difference  
( ) ( ) ( )yzkhyzxkyzxk nxnn ,,,,,, 11 ++ ′=− ξ ,     11 ++ << nnn xx ξ  

and taking into account  
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we get  
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Consider the calculation of the integral     ( )( )dssyskv n

x

x
xn

n

,,1
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+∫ ′= ξ . 

Suppose that we found the solution of equation (1) by any method. Then, taking into 
account the obtained solution in equation (1), we get an identity wherefrom we can get: 

( ) ( ) ( )( ) ( )( )dssysxkxyxxkxfxy
x

x
x ,,,,

0

∫ ′++′=′ . 

Here assuming 1+= nx ξ , we get: 

( )( ) ( ) ( ) ( )( )111111 ,,,,
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Allowing for the obtained one for calculating the quantity nv , we get the following: 
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It is easy to show that  
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Taking into account the one obtained in (1.2), we have: 
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(1.4) 
Obviously,   

( ) 0)()( 11 ≠′−− ++ nnn yhxyxy ξ , 
since the choice of the quantity 1+nξ  depends on the function ( )zyxk ,, . Therefore, using the 
following difference relation  

( ) 1
0
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m

i
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we can write: 

( ) ( ) ( ) in
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If we take into account sufficient smallness of 1+nξ  we can write  
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If for calculating the integrals in equation (1.4) we use Hermitian interpolational 
polynomials and take into account the above stated one, we can rewrite the obtained formula in 
the following form: 
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(1.5) 
where the coefficients ( ) ( )j

i
j

ii γβα ,,   ( )mji ,...,1,0, =  are some real numbers, that 0≠mα , 
and function ( ) ( ) ( )yzyxkzyxkzyxg yz ′′+′= ,,,,,, , ( )νν xff =    ( ),...2,1,0=ν . 

Consider finding of the coefficients ( ) ( )j
i

j
ii γβα ,,   ( )mji ,...,1,0, = . 

Obviously, if method (1.5) has a definite accuracy, it retains this accuracy also in the 
case when the integral’s kernel the function ( )yzxk ,,  is independent of x , i.e. 
( ) ( )yzF ,yz,x,k ≡ . Therefore into equation (1) we put ( ) ( )ysF ,zs,x,k ≡ . 

Then from equation (1) we have: 

( ) ( ) ( )( )dssysFxfxy
x

x
∫+=

0

, . 

Hence we get  
   ( ) ( )yxFxfy ,+′=′ ,   ( ) ( )00 xfxy = ,                                     (1.6) 

that is the Cauchy problem for first order ordinary differential equations. While applying 
method (1.5) to the solution of problem (1.6), the method (1.5) has the form:  

              in

m

i
iin

m

i
iin

m

i
iin

m

i
i HhFhfy +

=
+

=
+

=
+

=
∑∑∑∑ ++=

0

2

000

γβαα    ( )mNn −= ,...,1,0 ,           

(1.7) 

where  ( )∑
=
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( ) ( ) ( ) ( )yxFyxFyxFyxH yx ,,,, ′+′= . 
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For finding the coefficients iii γβα ,,  ( )mi ,...,1,0= , we suppose that the method (1.7) 
has degree p , and consequently for sufficiently smooth function ( )xz  we can write: 

( ) ( ) ( )( ) ( )1

0

2 +

=

=+′′−+′−+∑ p
m

i
iii hOihxzhihxzhihxz γβα , 0→h .               (1.8) 

   It is known that in order (1.8) hold, the unknowns iii γβα ,,   ( )mi ,...,1,0=  should satisfy the 
following conditions:  
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Consider the case 1=k . Without losing generality we can assume 11 =α , and get that 
10 −=α . In this case from (1.9) we have: 

.
4
13,

3
12,

2
1,1 111110101 =+=+=++=+ γβγβγγβββ                               (1.10) 

Solving this system, we get 12/110 == ββ . Notice that system (1.10) has a unique 
solution. Therefore the obtained method of type (1.7) with power 4=p  is unique. However in 
this case the constructed method of type (1.5) is not unique. Cite some of them:  
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Notice that if we consider the following finite-difference method 
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and take into account ),()()( yxFxfxy +′=′ ,   ),()()( yxgxfxy +′′=′′ , we have  
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Taking into account that the power of the method ( ) equals p , we can write 
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k

i

k

i
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= = =
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After considering the obtained one in ( ), we get 
For calculating 1+′ny  we can use the method from [2]. 
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