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Let’s consider the following problem: 
 

 max
1

→∑
=

N

j
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                (2) 

jj dx ≤≤0  ,   ( Nj ,1= )              (3) 

jx , jd  - the whole numbers, ( nj ,1= ), ( Nn ≤ )                  (4) 

Here 0>jc , 0>ja , 0>jd  ( Nj ,1= ),  0>b  and whole numbers.  
The problem (1) – (4) is a generalization of comprehensive knapsack problem. In case if 

Nn =  it ends up being absolutely comprehensive problem. 
In this work a method of solving mixed-integer programming problems with one limit is 

offered.  In this prospect, first, the number of variables and the range of possible values, which 
consists the solution, decreases.  Further, this solution brings us to the problem which asks for 
the”branch and bounds” method of solution, where in each branch we limit the range of 
functional and the variables.   Many held experiments show that the offered method works more 
efficiently than famous method of ”branch and bounds”. 

Without interrupting commonness, we suppose that in the problem (1) – (4) the unknown 
variables are in the following order:  
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Then, the best solution ),...,,( 21 nxxxx =  of the limitless problem (1) – (3) without 
variables, is analytically based on the next formula: for each i  ( Ni ,...2,1= )  
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We have to notice, what if Njn k ≤< )(  then the solutions ),...,,( 21 Nxxxx =  of 
boundless problem (1) – (3) are also the solutions of problem (1) – (4) and the process of the 
solving is over. Some approximate solution such as ),...,,( 21 Nxxxx =  of the                  

problem (1) – (4) we can review for each i in the following way: 
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And for Nnni ,...,2,1 ++= , 
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So, for the most optimal solution of *f  for the task (1) – (4) we can determine the upper 

( f ) and the lower ( f ) limits in the following way: 
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Theorem 1. Let 
)()(

/)(
ii jj Sffh −= , Ni ,1= . Then, the coordinates of the optimal 

solution of the given problem (1) – (4) are located on the following interval: 
a) If ]1;1[ −∈ ki , then ]]};[;0[max{

)()()()( iiii jjjj dhdx −∈ , 

b) If ];1[ Nki +∈ , then }]],min{[;0[
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So, due to the use of the Theorem 1, the number of variables and the range of possible 
solutions, which includes the most optimal solution, decreases.  

Let’s consider that after using the Theorem 1 we end up having an equivalent problem 
such as:   

      max
1

→∑
=

M

j
jj yc   ,                                                                   (5) 

,
1

bya
M

j
jj ′≤∑

=

                                                                           (6) 

                  Mjdya jjj ,1, =′≤≤  ,                                                      (7) 

                   −′jj dy , the whole numbers mj ,1=  .                                     (8) 

Here MjdxyubbnmNM jjjjjj ,1,,, =−=′−=≤′≤≤ αβα  

The values jα and jβ Mj ,1= can be determined by the Theorem 1. 
The experiments show that the number of mixed-integer variables m  in the            

problem (5) – (8) are a lot less than the number of n  in the original problem (1) – (4). 
Let’s consider ( )−⋅⋅⋅= MyyyY ,, 21 to be the optimal solution of limitless              

problem (5) – (8), which is determined analytically below, g  and g  – are the lower and the 
upper bounds of optimum in this problem. Generally we can consider that the division 

)()( ijij ac  variables are not in the order of increasing. 
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When the most optimal solution Y  of the unlimited problem (5) – (8), is being solved the 
following way: for each ),1( Mii =  
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Here k  is a variable, being represented as ratio. 
Also, we have to notice, that if Mkjm ≤< )( , then the solution ),,( 21 MyyyY ⋅⋅⋅= of 

the unlimited problem (5) – (7) is also the most suitable solution of the mixed-integer problem 
(5) – (8)and the process of solving is over . That is why we suppose that mkj ≤)( .  
 Considering all the conventional signs from the Theorem 1we can draw a conclusion. 

Statement 1. Coordinates Miy ij ,1,)( = the optimal solutions of the problem (5) – (8) 
are in the interval: 
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From the Statement 1 we have, that if for some ki <∗  the lower bound )( ∗ijy   is )( ∗
′ ijd , 

then it is the most optimal solution )()( ijij dy ′= for all ,1, −== ∗∗ iiii  .1,,2 =⋅⋅⋅−= ∗ iii  

And if ki >∗  the upper bound )( ∗ijy  will be zero, then the most optimal solution of the mixed-

integer problem (5) – (8) 0)( =ijy , when .,,1, Miiii ⋅⋅⋅+== ∗∗  
 Let’s note, that during numeral experiments this type of situations occur often so the 
number of branches considerably decreases. 
 Theorem 2.  а) If there is natural 2g , which corresponds to condition 

ggSg kj <<− − 2)1( , then in the solution (5) – (8) '
)()( ijij dy = , when 1,...,2,1 −= ki . 

б) If there is natural 2g , which corresponds to condition fgSg kj <<− + 2)1( , then in the 

solution     (5) – (8)  0)( =ijy , when Mki ,1+= . 

 Here k -is the number of the variable which is a ratio in the solution of mixed-integer 
problem (5) – (7). 
 Theorem 3. If for some number 2g , the conditions of the Theorem 2 can be applied 

and )()( ]~[ kjkj yy < , then 2g  will be lowered upper limit of the functional of the              

problem (5) – (8), therefore  [ ]gg <2 . Here 
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 It is necessary to note that the process of finding bettered upper limit 2g  is essential for 
the method of “branch and bounds”.  From the other side, if there is no natural number such as 
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2g , which corresponds to the conditions of the Theorem 2 then the upper limit g does not 
decrease.  
 Statement 2. If for some natural 2g , where gg =2  corresponds to the conditions from 

the Theorem 3, then the solution  [ ])()()(
'

)( ,1,1, kjkjkjij yykidy =−==  ,  

)1(
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'

)1( )( +
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r
rjrjkj ayaby ,    Mkiy ij ,2,0)( +== , 

is the most optimal solution of the mixed- integer problem (5) – (8). 
 The most distinguishing features of this method are: first we use the Theorem 1 to 
create the equaling problem (5) – (8) which has les variables and more limited range. Further we 
check the conditions of Theorem 3 and Statement 2. If the conditions of the Statement 2 suit 
then the optimal solution is found. If not, we have to build additional problems а) and б) 
according to k  which is a ratio. 

1][],[ )()()()( +≥≤ kjkjkjkj yyyy  
Each of the following problems а) and б) are solved analytically without the condition of whole 
parts of variables.  Also bettered upper limits are found.  
 It is important to notice, that for each unsolved problem from the list the range of 
variables and limits decreases. That is why, based on this conclusion we can say that the method 
offered in this paper is more efficient that classical method of ”branch and bounds. 
 Notice, that the results we get in this paper are generalization of the work [1 – 5] to 
more range of problems particularly for mixed-integer programming with only one limit.                          
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