STABILITY GREEDY ALGORITHM FOR ONE PROBLEMS DISCRETE OPTIMIZATION

Ali Ramazanov

Baku State University, Baku, Azerbaijan rab-unibak@rambler.ru

In this paper we apply the theory of ordered convexity to stability of the greedy algorithm with respect to perturbations of the parameters of the coordinate-convex objective functions.

Let $Z^n = (Z^n, \leq)$ $(Z_+^n = (Z_+^n, \leq))$ be the set of all (nonnegative) integer n-vectors. If $0 = (0,...,0) \in P \subseteq Z_+^n$, P is finite, and the conditions $x \leq y$ and $x, y \in P$ imply the inclusion $[x, y] = \{z : x \leq z \leq y, z \in Z_+^n\} \subseteq P$ then the set P is called a finite ordered-convex set with zero [1]. In what follows, we assume that $P \subseteq Z_+^n$ is a finite ordered-convex set with zero.

A function $f: \mathbb{Z}_{+}^{n} \to \mathbb{R}$ (where \mathbb{R} denotes the set of real numbers) is said to be ρ -coordinate-convex [2], if

$$\begin{split} \Delta_{ij} f(x) &= \Delta_{j} f(x + e^{i}) - \Delta_{j} f(x) \leq 0, \forall x \in Z_{+}^{n}, i, j \in N = \{1, 2, ..., n\}, i \neq j, \\ \Delta_{ii} f(x) \leq -\rho_{i}, \forall x \in Z_{+}^{n}, i \in N, \end{split}$$

where

$$\Delta_{j}f(x) = f(x+e^{j}) - f(x), e^{j} = (e_{1}^{j}, ..., e_{n}^{j}), e_{j}^{j} = 1, e_{j}^{k} = 0, j \neq k, j, k \in \mathbb{N},$$

$$\rho = (\rho_{1}, ..., \rho_{n}) \in \mathbb{R}^{n}_{+},$$

 R_{+}^{n} - is the set of nonnegative real n-vectors.

We denote the set of all ρ -coordinate-convex functions by $\Re_{\rho}(Z_{+}^{n})$.

A usual, a function $f: \mathbb{Z}_{+}^{n} \to \mathbb{R}$ is non-decreasing, if $\Delta_{i} f(x) \ge 0$ for any $x \in \mathbb{Z}_{+}^{n}$ and $i \in \mathbb{N}$.

Consider the discrete optimization Problem A:

$$\max\{f(x): x = (x_1, ..., x_n) \in P\},\$$

where $f: \mathbb{Z}_{+}^{n} \to \mathbb{R}$ is a non-decreasing ρ - coordinate-convex function, $P \subseteq \mathbb{Z}_{+}^{n}$ - orderedconvexity set.

Let x^* be an optimal solution Problem A, and let x^g be its gradient solution, i.e., the point obtained by applying the gradient coordinate ascent algorithm (see. e.g. [1, 2]). By a guaranteed error estimate for the gradient algorithm in Problem A we mean a number $\varepsilon \ge 0$ for which

$$\frac{f(x^*) - f(x^g)}{f(x^*) - f(0)} \le \varepsilon.$$

By perturbations of Problem A by means of a function f(x) we mean the problems

 A^{δ}

$$\max\{f^{\delta}(x): x = (x_1, ..., x_n) \in P\},\$$

where

$$\begin{split} &f^{\delta}(x) \in \mathfrak{R}_{q}(Z_{+}^{n}), \left| c(f^{\delta}) - c(f) \right| \leq \delta, \delta \in R_{+}^{1}, \\ &c(f) = \min \left(\frac{\Delta_{i}f(x) - \Delta_{j}f(\pi_{i}(x))}{\Delta_{i}f(x)} : \Delta_{i}(f(x) > \Delta_{j}f(\pi_{i}(x)) \geq 0, i \in fes(x,P), j \in fes(\pi_{i}(x),P) \right), \\ &fes(x,P) = \{i \in N : x + e^{i} \in P\}, \pi_{i}(x) = (x_{1}, ..., x_{i-1}, x_{i} + 1, x_{i+1}, ..., x_{n}). \end{split}$$

Let $\varepsilon(\varepsilon^{\delta})$ be a guaranteed error estimate for the gradient algorithm in some unperturbed (perturbed) discrete optimization problem. As usual, we say that the gradient algorithm is stable, if $\varepsilon^{\delta} < \varepsilon K(\delta)$, where $K(\delta) \rightarrow 1 \text{ as } \delta \rightarrow 0$ [2].

Theorem. Let ε and ε^{δ} be guaranteed error estimates for the gradient algorithm in Problems A and A^{δ} , respectively, c(f) < 1. Then $\varepsilon^{\delta} < \varepsilon$.

References

- 1. M.M. Kovalev (1987) Matroids in discrete Optimization (in Russian), Minsk.
- 2. A.B. Ramazanov // Mathematical Notes, vol. 84, No. 1, pp. 147-151 (2008).