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 In this paper we apply the theory of ordered convexity to stability of the greedy 
algorithm with respect to perturbations of the parameters of the coordinate-convex objective 
functions. 
 Let )),((),( ≤=≤= ++

nnnn ZZZZ be the set of all (nonnegative) integer 
−n vectors. If  PZP n ,)0,...,0(0 +⊆∈= is finite, and the conditions yx ≤  and Pyx ∈,  

imply the inclusion PZzyzxzyx n ⊆∈≤≤= + },:{],[ then the set P is called a finite 
ordered-convex set with zero [1]. In what follows, we assume that nZP +⊆  is a finite ordered-
convex set with zero. 
 A function RZf n →+:  (where R denotes the set of real numbers) is said to be ρ - 
coordinate-convex [ 2], if 
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nR+  - is the set of nonnegative real n-vectors. 
 We denote the set of all ρ -coordinate-convex functions by )( nZ +ℜρ . 

 A usual, a function RZf n →+:  is non- decreasing, if 0)( ≥Δ xfi for any nZx +∈  
and .Ni∈  
 Consider the discrete optimization  Problem A: 
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where RZf n →+:  is a non-decreasing −ρ  coordinate-convex function, nZP +⊆  - ordered-
convexity  set. 

Let *x be an optimal solution Problem A, and let gx  be its gradient solution, i.e., the 
point obtained by applying the gradient coordinate ascent algorithm (see. e.g. [1, 2]). By a 
guaranteed error estimate for the gradient algorithm in Problem A we mean a number 0≥ε   for 
which 
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 By perturbations of Problem A by means of a function )( xf we mean the problems 
δA  
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 Let )( δεε  be a guaranteed error estimate for the gradient algorithm in some 
unperturbed (perturbed) discrete optimization problem. As usual, we say that the gradient 
algorithm is stable, if )(δεε δ K< , where 01)( →→ δδ asK  [2]. 
 Theorem. Let ε  and δε  be guaranteed error estimates for the gradient algorithm in 
Problems A  and δA , respectively,  .1)( <fc   Then εε δ < . 
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