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Let controlled process in ),0(),0( TlQ ×=  be described by the hyperbolic equation 
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where ),,0(1
20 lWu ∈ ),0(21 lLu ∈  - given functions, ),,,( vutxf - given Karateodori 

function, i.e., it is measurable on Qtx ∈),(  for all [ ]21,),( mmRvu ×∈ , continuous on 
[ ]21,),( mmRvu ×∈  for almost all Qtx ∈),( , has the bounded derivative with respect to  u  

for almost all Qtx ∈),(  and for all [ ]21,),( mmRvu ×∈ , 21, mm  - given numbers. 
As a class of admissible controls dU  is taken the set of measurable, bounded on Q   

functions ),( txv  with values from the interval [ ]21, mm . 
For each admissible control  ),( txv  under the solution of the problem (1) - (3) is 

understood a function )(),( 1
2 QWtxu ∈  (the generalized solution). Note, that such solution is 

bounded on Q . 
        On the set dU  it is required to minimize the functional 

                                    

[ ] [ ]{ }

[ ] ,),(),(

)(),()(),0()(

0 0

2

0

2
11

2
00

dxdttxwtxv

dttftlutftuvJ

l T

T

∫ ∫

∫

−+

+−+−=

α

ββα

               (4) 

with additional phase restriction 
                                                             ,21 ),( rtxur ≤≤                                                               (5) 

where )(),(),,0()(),( 2210 QLtxwTLtftf ∈∈ - given functions, ,0≥α  ,00 ≥β  ,01 ≥β  

2110 ,,0 rr>+ ββ  - given numbers. 
By the help of penalty function the problem (1) - (5) is reduced to the following 

problem: to find a minimum functional 
)()()(~ vPvJvJ k+= α  

by restrictions (1) - (3), where      
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In the work the conjugate problem is introduced: 
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     Using the problem (6)-(8) and assuming that ),,,( vutxf  has a derivative with respect to v , 

that belongs to )(QL∞ , is proved, that the functional )(~ vJ  is differentiable on v  and        
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