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Consider a problem on minimum of the functional 
( ) ( )( )11 , xtzuS ϕ=                                                      (1) 

under constraints 
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( ) ( ) XTxtUxtu ×∈∈ ,,, .                                            (4) 
Here ( )zϕ  is a twice continuously differentiable scalar function, ( )uzsxtf ,,,,, τ  is a 

given n -dimensional vector-function continuous in the aggregate of all variables together with 
partial derivatives with respect to ( )uz,  to the second order inclusively, to xxtt ,,, 010  are the 
given numbers, the differences 01 tt − , 01 xx −  a natural numbers, ( )xa , ( )tb  are the given n -
dimensional discrete vector-functions, U  is a given non-empty, bounded and convex set, 
( )xtu ,  is r -dimensional vector of control actions (admissible control). 

The admissible control ( ) ( )( )xtzxtu ,,,  delivering minimum to the functional (1) under 
constraints (2)-(4) is called an optimal process, the control ( )xtu ,  an optimal control. 

Assuming ( ) ( )( )xtzxtu ,,,  a fixed admissible process, we introduce the denotation  
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where ( )xt,ψψ =  is n -dimensional vector-function being a solution of the boundary value 
problem 

( ) ( ) ( ) ( )( )xtxtuxtzxtHxt z ,,,,,,,1,1 ψψ =−− ,                                          (5) 
                     ( ) 01,11 =−− xtψ ,    100 ,...,1, xxxx += , 

( ) 01,1 1 =−− xtψ ,      100 ,...,1, tttx += ,                                             (6) 
                              ( ) ( )( )1111 ,1,1 xtzxt zϕψ −=−− . 

The boundary value problem (5)-(6) is called conjugated to the problem (1)-(4). 
In the paper, at first it was proved that if the set U  is convex, for optimality of the 

admissible control ( )xtu ,  in problem (1)-(4) the inequality 
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should be fulfilled for all ( ) ( ) XTxtUxtv ×∈∈ ,,, . 
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Inequality (7) is a first order necessary optimality condition in the form of linearized 
maximum principle [1-3]. 

Further, the case of degeneration of necessary optimality condition (7) is studied. 
Definition. The admissible control ( )xtu ,  is said to be quasi-singular if for all 

( ) Uxtv ∈, , ( ) XTxt ×∈,  
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Let ( )xty ,  be a solution of the boundary value problem 
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We call problem (8)-(9) an equation in variations in problem (1)-(4). 
Developing the scheme suggested in [4-6], we get various necessary optimality conditions 

of singular controls. Cite one of them: 
Theorem. If the set U  is convex, for optimality of the quasi-singular control ( )xtu ,  in 

problem (1)-(4) the inequality 
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should be fulfilled for all ( ) ( ) XTxtUxtv ×∈∈ ,,, . 
Inequality (10) is an implicit necessary optimality condition of quasisingular controls and 

is of sufficiently general character. 
Using inequality (10), by means of the scheme developed in [4-6], we could get explicit 

necessary optimality conditions that are directly expressed by the parameters of problem (1)-(4). 
Different special cases are studied. 
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