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We consider a problem on minimum of the functional 
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under constraints 
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( ) ( ) XTxtUxtu ×∈∈ ,,, .                                                      (4) 
Here, ( )zϕ  is a given twice continuously differentiable scalar function, ( )uzsxtf ,,,,, τ  

is a given n -dimensional vector-function continuous in the aggregate of variables together with 
partial derivatives with respect to z  to the second order inclusively, xxtt ,,, 010  are the given 
numbers, moreover the differences 01 tt − , 01 xx −  are natural numbers, ( )xa , ( )tb  are the 
given n -dimensional discrete vector-functions, U  is a given non-empty and bounded set, 
( )xtu ,  is r -dimensional vector of control actions (admissible control). 

The admissible process ( ) ( )( )xtzxtu ,,,  delivering minimum to the functional (1) under 
constraints (2)-(4) is called an optimal process, the control ( )xtu ,  an optimal control. 

Assuming ( ) ( )( )xtzxtu ,,,  a fixed admissible process, introduce the denotation 
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where ( )xtii ,ψψ =  n -dimensional vector-function being a solution of the problem 
( ) ( ) ( ) ( )( )xtxtuxtzxtHxt z ,,,,,,,1,1 ψψ =−− ,                                              (5) 

                                             ( ) 01,11 =−− xtψ , 
( ) 01,1 1 =−− xtψ ,                                                                       (6) 

                                     ( ) ( )( )1111 ,1,1 xtzxt zϕψ −=−− . 
Boundary value problem (5)-(6) is called conjugated to problem (1)-(4). 
It is proved in the paper that of the set 

( )( ) ( )( ){ }UvvszsxtfUszsxtf ∈== ,,,,,,,:,,,,,, ττααττ                             (7) 
is convex, then for optimality of the admissible control ( )xtu ,  in problem (1)-(4), the inequality 
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should be fulfilled for all ( ) ( ) XTxtUxtv ×∈∈ ,,, . 
Inequality (8) is a first order necessary optimality condition in the form of the discrete 

maximum principle [1-4]. 
Study the degeneration case of optimality condition (8). 
Following f.e. [5, 6], introduce 
Definition. The admissible control ( )xtu ,  is said to be singular in the sense of 

Pontryagin’s maximum principle if for all ( ) Uxtv ∈, , ( ) XTxt ×∈,  

                              ( ) ( ) ( ) ( )( ) 0,,,,,,,
1 1

,

1

0

1

0

≡Δ∑∑
−

=

−

=

t

tt

x

xx
xtv xtxtuxtzxtH ψ . 

Let ( )xty ,  be a solution of the boundary value problem 
( )
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We call boundary value problem (9)-(10) an equation in variations in problem (1)-(4). 
Developing the scheme suggested in the papers [1-3], various necessary optimality 

conditions of singular controls are obtained. Cite one of them. 
Theorem. If the set (7) is convex, then for optimality of singular, in the sense of 

Pontryagin’s maximum principle, control ( )xtu ,  in problem (1)-(4) the inequality 
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( ) ( ) ( ) ( )( ) ( )] ,0,,,,,,,,2 , ≥′Δ+ xtyxtxtuxtzxtH zxtv ψ                                  (11) 

should be fulfilled for all ( ) ( ) XTxtUxtv ×∈∈ ,,, . 
Inequality (11) is sufficiently general, but at the same time implicit necessary optimality 

condition of singular, in the sense of Pontryagin’s maximum principle, controls. 
Based on it, under some additional assumptions we succeeded to get necessary 

optimality conditions of singular controls obviously expressed by the parameters of problem 
(1)-(4). 
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