BELLMAN EQUATION FOR OPTIMAL PROCESSES WITH NONLINEAR MULTI-PARAMETRIC BINARY DYNAMIC SYSTEM

Yakup H. Haci ${ }^{1}$ and Kemal Ozen ${ }^{2}$

${ }^{1}$ Canakkale Onsekiz Mart University, Canakkale, TURKEY, yhaciyev@comu.edu.tr ${ }^{2}$ Namik Kemal University, Tekirdag, TURKEY, kozen@nku.edu.tr

In general, nonlinear multi-parametric binary dynamic system(NMBDS) is defined as follows [1]:

$$
\begin{align*}
& \xi_{v} s(c)=F_{v}(c, s(c), x(c)), v=1,2, \ldots, k \tag{1}\\
& s\left(c^{0}\right)=s^{0} \tag{2}
\end{align*}
$$

where $c=\left(c_{1}, c_{2}, \ldots, c_{k}\right) \in G_{d}=\left\{c \mid c \in Z^{k}, c_{1}^{0} \leq c_{1} \leq c_{1}^{L_{1}}, \ldots, c_{k}^{0} \leq c_{k} \leq c_{k}^{L_{k}}, c_{i} \in Z\right\}$ is a point in Z^{k} determining position; $L_{i}, i=1,2, \ldots, k$ where k is a positive integer, is the duration of the stage i of the process. Here, Z is the set of integers. For $s(c) \in S, x(c) \in X ; S=[G F(2)]^{m}$, $X=[G F(2)]^{r}$ are state and input index (alphabet) respectively; $s(c)$ and $x(c)$ are defined over the set Z^{k} as an m and r dimensional state and input vectors at the point c. $c^{0}=\left(c_{1}^{0}, c_{2}^{0}, \ldots, c_{k}^{0}\right)$ is the initial position vector of the system and s^{0} is the initial state vector of the system. $c^{L_{i}}=\left(c_{1}^{L_{i}}, c_{2}^{L_{i}}, \ldots, c_{k}^{L_{i}}\right)$ is the point to which the system moves after the stage $i-1 . \xi_{v}$ is a shift operator defined as follows [1]:

$$
\begin{equation*}
\xi_{v} s(c)=s\left(c+e_{v}\right) ; e_{v}(0, \ldots, 0,1,0, \ldots, 0), v=1,2, \ldots, k \tag{3}
\end{equation*}
$$

Boolean vector functions $[2,3]$ denoted by $F_{v}(\cdot)=\left\{F_{v_{1}}(\cdot), F_{v_{2}}(\cdot), \ldots, F_{v_{m}}(\cdot)\right\}$ are nonlinear functions, where $G F(2)$ is a Galois field and the representation (\cdot) denotes $(c, s(c), x(c))$ for simplicity.

Optimal piecewise process represented by the system (1)-(2) is characterized by the pseudo Boolean functional [3] given by:

$$
\begin{equation*}
J(x)=\varphi\left(s\left(c^{L}\right)\right. \tag{4}
\end{equation*}
$$

which we use as an objective functional for the considered problem in the presented proceeding. Here, $L=L_{1}+L_{2}+\ldots+L_{k}$ is the time duration of this process.

Now, we can state the considered original problem represented by NMBDS as follows:
In order for a given NMBDS to go from the known initial state s^{0} to any desired state $s^{*}\left(c^{L}\right)$, to which we expect to access in L steps, a control $x(c) \in \hat{X}$ [6] must exist such that the functional in (4) has a minimal value:

$$
\begin{align*}
& \xi_{v} s(c)=F_{v}(c, s(c), x(c)), c \in G_{d}, v=1,2, \ldots, k \tag{5}\\
& s\left(c^{0}\right)=s^{0} \tag{6}\\
& x(c) \in \hat{X}, c \in \hat{G}_{d} \tag{7}\\
& J(x)=\varphi\left(s\left(c^{L}\right)\right) \rightarrow \text { min. } \tag{8}
\end{align*}
$$

Since the transfer functions are Boolean and the objective functional which characterizes the process is the process is pseudo Boolean [3,5], the pseudo Boolean expressions of the transfer functions have been obtained by the operations given in [5]. After this step, the problem can be stated as follows:

$$
\begin{align*}
& \xi_{v} s(c)=\hat{F}_{v}(c, s(c), x(c)), c \in G_{d}, v=1,2, \ldots, k \tag{9}\\
& s\left(c^{0}\right)=s^{0} \tag{10}\\
& x(c) \in \hat{X}, c \in \hat{G}_{d} \tag{11}\\
& J(x)=\varphi\left(s\left(c^{L}\right)\right) \rightarrow \min . \tag{12}
\end{align*}
$$

where $\hat{F}_{v}(\cdot)(v=1, \ldots, k)$ denotes the pseudo Boolean expression of the Boolean vector function $F_{v}(\cdot)(v=1, \ldots, k)$ and $\hat{G_{d}}=G_{d} \backslash\left\{c^{L}\right\}$.

Since we have shown that the principle of optimality [4] is satisfied for the problem (9)(12), hereafter we can formulate this problem as an optimal problem [6]:

$$
\begin{align*}
& \xi_{v} s(c)=\hat{F}_{v}(c, s(c), x(c)), c \in G_{d}(\sigma), v=1,2, \ldots, k \tag{13}\\
& s(\sigma)=\chi \tag{14}\\
& x(c) \in \hat{X}, c \in G_{d}(\sigma) \tag{15}\\
& J(x)=\varphi\left(s\left(c^{L}\right)\right) \rightarrow \min \tag{16}
\end{align*}
$$

where $\quad \chi \in S=[G F(2)]^{m}, \sigma \in G_{d}, G_{d}(\sigma)=\left\{c\left|\sigma_{1} \leq c_{1} \leq c_{1}{ }^{L_{1}}, \ldots,\right| \sigma_{k} \leq c_{k} \leq c_{k}{ }^{L_{k}}\right\}$. If we substitute $\sigma=c^{0}$ and $\chi=s^{0}$ into the problem (13)-(16), we can obtain the first problem stated above.

For every fixed σ and χ, let a function be corresponded to the optimal value of pseudo Boolean functional in the problem (13)-(16). We say that this function is the piecewise analogue of Bellman function [4] in the problem (9)-(12):

$$
\begin{equation*}
B(\sigma, \chi)=\min \varphi\left(s\left(c^{L}\right)\right) \tag{17}
\end{equation*}
$$

Here, minimization is implemented on the set of admissible controls $x(c)\left(c \in G_{d}(\sigma)\right)$.
We derive the Bellman equation for $B(\sigma, \chi)$ function: Assume that $x^{0}(c)\left(c \in G_{d}(\sigma)\right)$ is the corresponding optimal control to the problem (13)-(16) with the initial condition and $s^{0}(c)\left(c \in G_{d}(\sigma)\right)$ is also the corresponding optimal trajectory to that problem.

Let the point $\xi_{v} \sigma \in G_{d}(\sigma)(v=1,2, \ldots, k)$ and any element $y(c) \in \hat{X}$ be considered. If $x(\sigma)=y(c)$, then the state of the system in the point $\xi_{v} \sigma$ is determined by the following equality:

$$
\begin{equation*}
s\left(\xi_{v} \sigma\right)=F_{v}(\sigma, \chi, y(c)) \tag{18}
\end{equation*}
$$

We consider the following problem:

$$
\begin{align*}
& \xi_{v} s(c)=F_{v}(c, s(c), x(c)), c \in G_{d}\left(\xi_{v} \sigma\right) \tag{19}\\
& s\left(\xi_{v} \sigma\right)=F_{v}(\sigma, \chi, y(c)) \tag{20}\\
& x(c) \in \hat{X}, c \in G_{d}\left(\xi_{v} \sigma\right) \tag{21}\\
& J(x)=\varphi\left(s\left(c^{L}\right)\right) \rightarrow \text { min } \tag{22}
\end{align*}
$$

If $\hat{y}(c)\left(c \in G_{d}\left(\xi_{v} \sigma\right)\right)$ is the corresponding optimal control to the problem (19)-(22) and $\hat{s}(c)\left(c \in G_{d}\left(\xi_{v} \sigma\right)\right)$ is also the corresponding optimal trajectory to that problem, then according to our definition stated above, the equality

$$
\begin{equation*}
\varphi\left(s\left(c^{L}\right)\right)=B\left(\xi_{v} \sigma, F_{v}(\sigma, \chi, y(c))\right) \tag{23}
\end{equation*}
$$

can be obtained.
Now, let the following admissible control

$$
\tilde{x}(c)=\left\{\begin{array}{l}
y(c), \quad \text { for } c=\sigma \tag{24}\\
\hat{y}(c), \quad \text { for } c \in G_{d}\left(\xi_{v} \sigma\right)
\end{array}\right.
$$

be considered for the problem (13)-(16). Then $\widetilde{S}(c)$ is determined by

$$
\tilde{s}(c)=\left\{\begin{array}{cc}
F_{v}(\sigma, \chi, y(c)), & \text { for } c=\sigma \tag{25}\\
\hat{s}(c), & \text { for } c \in G_{d}\left(\xi_{v} \sigma\right)
\end{array} .\right.
$$

It is clear that the corresponding value of the pseudo Boolean functional $J(x)=\varphi\left(s\left(c^{L}\right)\right)$ to the control $x(c)\left(c \in G_{d}(\sigma)\right)$ is

$$
\begin{equation*}
\varphi\left(\tilde{s}\left(c^{L}\right)\right)=\varphi\left(\hat{s}\left(c^{L}\right)\right)=B\left(\xi_{v} \sigma, F_{v}(\sigma, \chi, y(c))\right) . \tag{26}
\end{equation*}
$$

Since $\tilde{x}(c)\left(c \in G_{d}(\sigma)\right)$ is not generally optimal control, we can write

$$
\begin{equation*}
\varphi\left(\tilde{s}\left(c^{L}\right)\right) \geq \varphi\left(s^{0}\left(c^{L}\right)\right)=B(\sigma, \chi) \tag{27}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
B(\sigma, \chi) \leq B\left(\xi_{v} \sigma, F_{v}(\sigma, \chi, y(c))\right) \tag{28}
\end{equation*}
$$

On the other hand, if $y(c)=x^{0}(\sigma)$, then $y(c)\left(c \in G_{d}\left(\xi_{v} \sigma\right)\right)$ equals to $x^{0}(c)\left(c \in G_{d}\left(\xi_{v} \sigma\right)\right)$ by the principle of optimality. So,

$$
\begin{equation*}
B(\sigma, \chi)=B\left(\xi_{v} \sigma, F_{v}\left(\sigma, \chi, x^{0}(\sigma)\right)\right) \tag{29}
\end{equation*}
$$

By (28) and (29), Bellman equation can be obtained as follows:

$$
\begin{equation*}
B(\sigma, \chi)=\min _{y(c) \in \hat{X}} B\left(\xi_{v} \sigma, F_{v}\left(\sigma, \chi, x^{0}(\sigma)\right)\right), \chi \in S . \tag{30}
\end{equation*}
$$

The initial condition for Bellman equation is given on the right-upper region of G_{d} and directly determined with the help of the following equality

$$
\begin{equation*}
B\left(c^{L}, \chi\right)=\varphi(\chi), \chi \in S \tag{31}
\end{equation*}
$$

Hence, Bellman function is the solution of the equation (30) with the initial condition (31).
It is clear that Bellman equation (30) has exact solution.
If η_{v} is inverse operator of the shift operator ξ_{v}, then we have

$$
\begin{equation*}
\eta_{v} B\left(\xi_{v} \sigma, \chi\right)=B(\sigma, \chi) \tag{32}
\end{equation*}
$$

Thus, Bellman equation (30) can be derived as follows:

$$
\begin{equation*}
\eta_{v} B\left(\xi_{v} \sigma, \chi\right)=\min _{y(c) \in \hat{X}} B\left(\xi_{v} \sigma, \hat{F}_{v}(\sigma, \chi, y(c))\right), v=1,2, \ldots, k \tag{33}
\end{equation*}
$$

Substituting $\xi_{v} \sigma=\delta$ in (33), we obtain

$$
\begin{equation*}
\eta_{v} B(\delta, \chi)=\min _{y(c) \in \hat{X}\left(\eta_{v} \delta\right)} B\left(\delta, \hat{F}_{v}\left(\eta_{v} \delta, \chi, y(c)\right)\right), v=1,2, \ldots, k \tag{34}
\end{equation*}
$$

If $\eta_{v}\left(\eta_{v^{\prime}} B(\delta, \chi)\right)$ is evaluated for every $v, v^{\prime}=1,2, \ldots, k$, then

$$
\begin{aligned}
\eta_{v}\left(\eta_{v^{\prime}} B(\delta, \chi)\right) & =\eta_{v}\left(\min _{y(c) \in \hat{X}\left(\eta_{v^{\prime}} \delta\right)} B\left(\delta, \hat{F}_{v^{\prime}}\left(\eta_{v^{\prime}} \delta, \chi, y(c)\right)\right)\right) \\
& =\min _{y(c) \in \hat{X}\left(\eta_{v^{\prime}} \delta\right)} \eta_{v} B\left(\delta, \hat{F}_{v^{\prime}}\left(\eta_{v^{\prime}} \delta, \chi, y(c)\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
=\min _{y(c) \in \hat{X}\left(\eta_{v} \eta_{v^{\prime}} \delta\right)}\left[\min _{x(c) \in \hat{X}\left(\eta_{v} \delta\right)} B\left(\delta, \hat{F}_{v}\left(\eta_{v} \delta, F_{v^{\prime}}\left(\eta_{v^{\prime}} \eta_{v} \delta, y(c), \chi\right), x(c)\right)\right)\right] . \tag{35}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\eta_{v^{\prime}}\left(\eta_{v} B(\delta, \chi)\right)=\min _{y(c) \in \hat{X}\left(\eta_{v^{\prime}} \eta_{v} \delta\right)}\left[\min _{x(c) \in \hat{X}\left(\eta_{v^{\prime}} \delta\right)} B\left(\delta, \hat{F}_{v^{\prime}}\left(\eta_{v^{\prime}} \delta, F_{v}\left(\eta_{v} \eta_{v^{\prime}} \delta, y(c), \chi\right), x(c)\right)\right)\right] \tag{36}
\end{equation*}
$$

The condition implying the existence of the unique solution of the system of equations (13) is given by [1]

$$
\begin{array}{r}
F_{v}\left(c+e_{\mu}, F_{\mu}(c, s(c), x(c)), x\left(c+e_{\mu}\right)\right)=F_{\mu}\left(c+e_{v}, F_{v}(c, s(c), x(c)), x\left(c+e_{v}\right)\right) \tag{37}\\
v, \mu=1,2, \ldots, k
\end{array}
$$

Substituting $\mu=v^{\prime}$ in (37), we obtain

$$
\begin{align*}
& \hat{F}_{v}\left(\eta_{v} \delta, \hat{F}_{v^{\prime}}\left(\eta_{v} \eta_{v^{\prime}} \delta, \chi, x\left(\eta_{v} \eta_{v^{\prime}} \delta\right)\right), x\left(\eta_{v} \delta\right)\right)= \tag{38}\\
& \quad=\hat{F}_{v^{\prime}}\left(\eta_{v^{\prime}} \delta, \hat{F}_{v}\left(\eta_{v^{\prime}} \eta_{v} \delta, \chi, x\left(\eta_{v^{\prime}} \eta_{v} \delta\right)\right), x\left(\eta_{v^{\prime}} \delta\right)\right), v, v^{\prime}=1,2, \ldots, k
\end{align*}
$$

By (35), (36) and (38), the following result is derived:

$$
\eta_{v}\left(\eta_{v^{\prime}} B(\delta, \chi)\right)=\eta_{v^{\prime}}\left(\eta_{v} B(\delta, \chi)\right), v, v^{\prime}=1,2, \ldots, k
$$

This result is the condition implying the existence of the exact solution for Bellman equation (30). If Bellman equation (30) is solved subject to the condition (31) over the curve $\hat{L}\left(c^{0}, c^{1}, \ldots, c^{L}\right)$, then we achieve the following functions after L steps:

$$
B\left(c^{L}, \chi\right), B\left(c^{L-1}, \chi\right), \ldots, B\left(c^{0}, \chi\right)
$$

$B\left(c^{0}, s\left(c^{0}\right)\right)$ is the minimal value of the pseudo Boolean functional in the problem (13)(16). The optimal control is determined with the help of the following condition:

$$
B\left(\xi_{v} c, \hat{F}_{v}\left(c, s(c), x^{0}(c)\right)\right)=\min _{x(c) \in \hat{X}} B\left(\xi_{v} c, \hat{F}_{v}(c, s(c), x(c))\right) .
$$

where $c \in \hat{L}\left(c^{0}, c^{1}, \ldots, c^{L}\right)$. Here, $\hat{L}\left(c^{0}, c^{1}, \ldots, c^{L}\right)$ is piecewise curve associating the point c^{0} with the point $c^{L}[1] . v$ takes value such that $\xi_{v} c \in \hat{L}\left(c^{0}, c^{1}, \ldots, c^{L}\right)$. Then, the optimal trajectory is determined by

$$
\begin{aligned}
& \xi_{v} s(c)=\hat{F}_{v}\left(c, s(c), x^{0}(c)\right), v=1,2, \ldots, k \\
& s\left(c^{0}\right)=s^{0}
\end{aligned}
$$

References

1. I.V. Gaishun. Completely Solvable Multidimensional Differential Equations. (In Russian) Nauka and Tekhnika, Minsk (1983) 230-242 p.
2. J.A. Anderson. Discrete Mathematics with Combinatorics. (In English) Prentice Hall, New Jersey (2004) 1-38 p.
3. S.V. Yablonsky. Introduction to Discrete Mathematics. (In English) Mir Publishers, Moscow (1989) 11-35 p.
4. V.G. Boltyanskii. Optimal Control of Discrete Systems. (In Russian) John Wiley, New York (1978) 363-427 p.
5. Y. Hacı. Pseudo Boolean Expressions of Multi-parametric Boolean Vector Transfer Functions. (In Turkish) Proceedings of II. Turkish World Mathematics Symposium, Sakarya, Turkey (2007) 151 p.
6. Y.H. Hacı, K. Ozen. Terminal Control Problem For Processes Represented by Nonlinear Multi Parameter Binary Dynamic System. (In English) Control and Cybernetics (vol 38, issue 3) (2009) 625-633 p.
