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We consider an open bounded set Ω of Euclid space nR  with boundary S, 0,T >  
(0, ),Q T= Ω×  (0, ).S TΣ = ×  The system is described by the equation  

                                                ( , ; ) ,  ( , )
y

y a x t y v x t Q
t

∂
− Δ + = ∈

∂
,                                              (1) 

with boundary conditions 
                                                               0,y = ( , )x t ∈Σ ,                                                           (2) 
                                                             ( , 0) 0,y x = x∈Ω .                                                         (3) 

Let а be a Carathéodory function with inequalities 
1

0( ; ) ( ) | | ,qa a bξ ϕ ϕξ −≤ +  

 ( ; ) | | ,qa cξ ϕ ϕ ϕ≥  
 [ ( ; ) ( ; )]( ) 0a aξ ϕ ξ ψ ϕ ψ− − ≥  

for all ,ϕ ψ ∈R  and a.e. on Q, where   

0 ' ,( )qa L Q∈  0,b >  0,c >  1.q >  
We can note as example the function 

2( , ) | | ,qa s ϕ ϕ ϕ−=  
which satisfies to these properties.  

We definite the space 

{ }| ,  ,Y y y X y X′ ′= ∈ ∈  
where 

( )1
2 00, ; ( ) ).(qX L T H L Q= Ω ∩  

The space X ′  is its conjugate. It definite by equality 

( )1
2 '0, ; ( ) ( ),qX L T H L Q−′ = Ω +  

where 1/ 1/ 1.q q′+ =  Then for all control v from the space V X ′=  the problem (1) – (3) has a 
unique solution [ ]y y v=  from Y by the known theory of nonlinear parabolic equations [1]. 

The set dU  of admissible controls is defined by such functions v from convex closed 
subset U of the space V, which guaranties the equality  

                                                           ( , ) ,  ,y x T w x= ∈Ω                                                         (4) 
where w is the known function from the space 2 ( ).L Ω  We suppose that this set is nonempty. The 
minimizing functional is determined by equality 

( )2

2
( ) , ; [ ], [ ] ,

Q Q

I v v dQ F x t y v y v dQ
α

= + ∇∫ ∫  

where 0,α >  F is Carathéodory function on the set 1nQ +×R , besides ( ; , )F ξ ϕ ⋅  is convex and 
satisfies to the inequality 

( )( ; , )F ξ ϕ ψ ψ≥ Φ  
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for all ,ϕ ∈  ,nψ ∈  a.e. on .Qξ ∈  Here the increasing convex function : + +Φ →  
satisfies to the condition  

( ) /σ σΦ →∞  if σ →∞ . 
Problem P. Minimization of functional I  for the system (1) – (3) on the set dU . 
Optimal control problems for linear parabolic systems with fixed final state (see [2] – [4]) 

or for nonlinear parabolic systems with infixed final state (see [5] – [7]) are well known. 
However we have the nonlinear parabolic systems with fixed final state. 

Theorem 1. The Problem P is solvable.  
Let u be a solution of this problem. By penalty method we definite the functional 

21
( ) ( ) [ ]( , ) ( ) ,

2k
k

I v I v y v x T w x dx
ε Ω

= + −∫  

where 0kε >  and 0kε →  if .k →∞  We obtain the regularization problem kP  of minimizing 
the functional kΙ  for the system (1) – (3) on the set U. This problem has a solution ku . Let ky  
be the corresponding solution of the system (1) – (3). 

Theorem 2. If  k →∞  we obtain the convergences ku u→  weakly in V, ( )ky T w→  
weakly in 2 ( )L Ω  and ( ) min ( ).k dI u I U→  

This result can be use for the finding of the approximate solution of the given problem. 
Definition 1. A control v U∈ is the approximate solution of the Problem P, if the inclusions  

,v u O∈ +  ( ; )y v T w O′∈ +  
and the inequality  

( ) min ( )dI v I U δ≤ +  
are true for small enough neighborhoods in weak topology of zeros O in V and O′  in 2 ( )L Ω  and 
small enough number 0δ > . 

The control ku  is the approximate solution of the Problem P for the large enough number k 
by Theorem 2. Then we have to solve the problem kP  for the large enough number k. The 
substantiation of the corresponding necessary conditions of optimality requires to the 
differentiability of the solution of our state system with respect to the control in the point и. 
However we have the following results. 

Theorem 3. The mapping [ ] :y V Y⋅ →  for the system (1) – (3) is not Gateaux 
differentiable for larges enough values of parameters q and n. 

This circumstance interrupts to use the known methods of the resolution of optimal 
control problems for nonlinear parabolic equations (see, for example, [5] – [7]). Therefore we 
will use the extended differentiability [8]. It is the weaker property than Gateaux 
differentiability. 

Definition 2. An operator :A V Y→ is * * 0 0( , ; , )V Y V Y -extended differentiable in the 
point u, if it exists Banach spaces * * 0 0, ,,V Y V Y  with continuously inclusions  

* 0 0 *,  V V V Y Y Y⊂ ⊂ ⊂ ⊂  and linear continuous operator 0 0:V YD →  such as  
( )A u h Au Duσ

σ
+ −

→   in *Y  

for all *Vh∈  if 0σ → . 

We suppose that the function ( ; )a ξ ⋅  has the derivative ( ; )ya ξ ϕ  for all ϕ ∈ , which is 
the Carathéodory function with inequality 
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2( , ) ( ) | | , ,q
ya x y a x b y x y−′ ′≤ + ∀ ∈Ω ∈  

where /( 2) ( ),q qa L Q−′∈  0.b′ >  We determine the spaces 
1

* 2 0(0, ; ( )),Y L T H= Ω * * ,V Y ′=  { }0 * 0 2,  ( ) ,Y p p Y g p L Q= ∈ ∈ 0 0V Y ′= ,  
where 

( )0 0 ( ) ; [ ]( ) .yg g a y uξ ξ ξ= =  

Let [ ]p μ  be the solution of the boundary problem 

                                      ( )[ ]
[ ] , ; [ ] [ ] ,  ( , ) ,Qy

p
p a x t y u p x t Q

t
μ

μ μ μ
∂

− − Δ + = ∈
∂

                       (5)                                

                                                                    [ ] 0,p μ = ( , ) ,x t ∈Σ                                                (6) 
                                                                [ ]( , ) ,p x Tμ μΩ= ,x∈Ω                                              (7)           
where ( , ).Qμ μ μΩ=   

Theorem 4. The mapping [ ] :y V Y⋅ →  for the problem (1) – (3) has the * * 0 0( , ; , )V Y V Y -
extended derivative [ ]y v′  in the arbitrary point u V∈ . Besides it exists the linear continuous 
operator 2[ ] : ( ),Ty u V L′ → Ω  such as  

                                          { }[ ]( ) [ ]( ) / [ ]Ty u h T y u T y u hσ σ ′+ − →  in 2 ( )L Ω                                         
if 0σ → . We have also the equality 

  0 0 2[ ] [ ] [ ]  , , ( ).Q T Q
Q Q

y u hdQ y u hd p hdQ h V X Lμ μ μ μ μΩ Ω

Ω

′ ′ ′+ Ω = ∀ ∈ ∈ ∈ Ω∫ ∫ ∫  

We suppose that the derivative ( ; )F ξ ⋅  has the continuous partial derivatives 0 ( ; ),F ξ ζ′  

1( ; ),F ξ ζ′ …, ( ; )nF ξ ζ′  for 1nζ +∈ , besides the following inequalities   
1

2

0

( ; ) ( ) ,F F

n

i
i

F a bξ ζ ξ ζ
+

=

≤ + ∑  
1

0
( ; ) ( ) ,  0,..., 1,j j j

n

i
i

F a b j nξ ζ ξ ζ
+

=

′ ≤ + = +∑  

are true, where  
    1 2( ), ( ), 0, 0,F j F ja L Q a L Q b b∈ ∈ > > 0, ..., 1.j n= +  

We have the possibility to prove the differentiability with respect to the subspace [9] of the 
regularizing functional now. 

Theorem 5. The functional kI  is differentiable with respect to the subspace *V  in the 
arbitrary point ,ku V∈  besides its derivative satisfies to the equality 

( ) ,k k k kI u p uα′ = +  
where kp  is the solution of the boundary problem 

         ( ) ( ) ( ) 0, ; , ; , div , ; , ,  ( , ) ,k
k k k k k k ky

p
p a x t y p F x t y y F x t y y x t Q

t ∇

∂ ′ ′− − Δ + = ∇ − ∇ ∈
∂

    (8)    

                                                             0,kp = ( , ) ,x t ∈Σ                                                           (9) 

                                           [ ] /( , ) ( , ) ( ) ,k k kp x T y x T w x ε= − ,x∈Ω                                         (10)  

and [ ].k ky y u=  

It is known that the functional, which are differentiable with respect to the subspace *V  of 
the space V, has the minimum on the convex close subset U from V in the point и, if the variational 
inequality 
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( ), 0 ( )u v u v U uJ − ≥ ∀ ∈′  

is true, where , vλ  is the value of a linear continuous functional λ in the point v. The set ( )U u  
consists of all points ,v U∈  satisfying to the inclusion *( ) .v u V− ∈  Then we obtain the 
necessary condition of optimality for the problem kP  by means of the Theorem 5. 

Theorem 6. The solution of the problem kP  satisfies to the variational inequality 

                                          ( ) ( )  ( ).k k k k

Q

u p v u dQ v U uα + − ∀ ∈∫                                      (11) 

Thus the solution of the regularization problem can be finding from the system, which 
includes the boundary problem (1) – (3) for ,kv u=  the conjugate system (8) – (10) and the 
variational inequality (11). It becomes the approximate solution of the initial optimal control 
problem for large enough value k. 

We give as addition a result of the controllability of our system. 
Definition 3 [10]. The system (1) – (3) is approximate controllable if the set 

{ }[ ]( )TY y v T Vv= ∈  

is dense in the space 2 ( ).L Ω  

Theorem 7.  We suppose that the following condition  
2n ≤  or 2 /( 2)q n n≤ −  for 3n ≥ . 

are true. Then the system (1) – (3) is approximate controllable. 
This result gives some information about the set  dU .  
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