OPTIMAL CONTROL PROBLEM FOR THE NONLINEAR PARABOLIC SYSTEM WITH FIXED FINAL STATE

Simon Serovajsky

al-Farabi Kazakh National University, Almaty, Kazakhstan serovajskys@mail.ru

We consider an open bounded set Ω of Euclid space \mathbf{R}^n with boundary *S*, T > 0, $Q = \Omega \times (0,T)$, $\Sigma = S \times (0,T)$. The system is described by the equation

$$\frac{\partial y}{\partial t} - \Delta y + a(x,t;y) = v, \ (x,t) \in Q ,$$
(1)

with boundary conditions

$$y = 0, (x,t) \in \Sigma,$$
⁽²⁾

$$y(x,0) = 0, \ x \in \Omega . \tag{3}$$

Let *a* be a Carathéodory function with inequalities

$$a(\xi;\varphi) | \leq a_0(\xi) + b | \varphi|^{q-1},$$

$$a(\xi;\varphi)\varphi \ge c \mid \varphi \mid^{q},$$
$$[a(\xi;\varphi) - a(\xi;\psi)](\varphi - \psi) \ge 0$$

for all $\varphi, \psi \in \mathbf{R}$ and a.e. on Q, where

 $a_0 \in L_{a'}(Q), \ b > 0, \ c > 0, \ q > 1.$

We can note as example the function

$$a(s,\varphi) = |\varphi|^{q-2} \varphi,$$

which satisfies to these properties.

We definite the space

$$Y = \left\{ y \mid y \in X, \ y' \in X' \right\},$$

where

$$X = L_2(0,T;H_0^1(\Omega)) \cap L_q(Q).$$

The space X' is its conjugate. It definite by equality

$$X' = L_2(0,T; H^{-1}(\Omega)) + L_{q'}(Q),$$

where 1/q + 1/q' = 1. Then for all control v from the space V = X' the problem (1) – (3) has a unique solution y = y[v] from Y by the known theory of nonlinear parabolic equations [1].

The set U_d of admissible controls is defined by such functions v from convex closed subset U of the space V, which guaranties the equality

$$y(x,T) = w, \ x \in \Omega, \tag{4}$$

where w is the known function from the space $L_2(\Omega)$. We suppose that this set is nonempty. The minimizing functional is determined by equality

$$I(v) = \frac{\alpha}{2} \int_{Q} v^2 dQ + \int_{Q} F(x,t;y[v],\nabla y[v]) dQ,$$

where $\alpha > 0$, F is Carathéodory function on the set $Q \times \mathbf{R}^{n+1}$, besides $F(\xi; \varphi, \cdot)$ is convex and satisfies to the inequality

$$F(\xi; \varphi, \psi) \ge \Phi(|\psi|)$$

for all $\varphi \in \Box$, $\Psi \in \Box^n$, a.e. on $\xi \in Q$. Here the increasing convex function $\Phi : \Box_+ \to \Box_+$ satisfies to the condition

$$\Phi(\sigma)/\sigma \to \infty$$
 if $\sigma \to \infty$.

Problem P. Minimization of functional I for the system (1) - (3) on the set U_d .

Optimal control problems for linear parabolic systems with fixed final state (see [2] - [4]) or for nonlinear parabolic systems with infixed final state (see [5] - [7]) are well known. However we have the nonlinear parabolic systems with fixed final state.

Theorem 1. *The Problem P is solvable*.

Let *u* be a solution of this problem. By penalty method we definite the functional

$$I_k(v) = I(v) + \frac{1}{2\varepsilon_k} \int_{\Omega} |y[v](x,T) - w(x)|^2 dx,$$

where $\varepsilon_k > 0$ and $\varepsilon_k \to 0$ if $k \to \infty$. We obtain the regularization problem P_k of minimizing the functional I_k for the system (1) – (3) on the set U. This problem has a solution u_k . Let y_k be the corresponding solution of the system (1) – (3).

Theorem 2. If $k \to \infty$ we obtain the convergences $u_k \to u$ weakly in V, $y_k(T) \to w$ weakly in $L_2(\Omega)$ and $I(u_k) \to \min I(U_d)$.

This result can be use for the finding of the approximate solution of the given problem.

Definition 1. A control $v \in U$ is the approximate solution of the Problem P, if the inclusions $v \in u + O$, $y(v;T) \in w + O'$

and the inequality

$$I(v) \le \min I(U_d) + \delta$$

are true for small enough neighborhoods in weak topology of zeros O in V and O' in $L_2(\Omega)$ and small enough number $\delta > 0$.

The control u_k is the approximate solution of the Problem *P* for the large enough number *k* by Theorem 2. Then we have to solve the problem P_k for the large enough number *k*. The substantiation of the corresponding necessary conditions of optimality requires to the differentiability of the solution of our state system with respect to the control in the point *u*. However we have the following results.

Theorem 3. The mapping $y[\cdot]: V \to Y$ for the system (1) - (3) is not Gateaux differentiable for larges enough values of parameters q and n.

This circumstance interrupts to use the known methods of the resolution of optimal control problems for nonlinear parabolic equations (see, for example, [5] - [7]). Therefore we will use the extended differentiability [8]. It is the weaker property than Gateaux differentiability.

Definition 2. An operator $A: V \to Y$ is $(V_*, Y_*; V_0, Y_0)$ -extended differentiable in the point u, if it exists Banach spaces V_*, Y_*, V_0, Y_0 with continuously inclusions $V_* \subset V_0 \subset V, \ Y \subset Y_0 \subset Y_*$ and linear continuous operator $D: V_0 \to Y_0$ such as

$$\frac{A(u+\sigma h)-Au}{\sigma} \to Du \quad in \ Y_*$$

for all $h \in V_*$ if $\sigma \to 0$.

We suppose that the function $a(\xi; \cdot)$ has the derivative $a_y(\xi; \varphi)$ for all $\varphi \in \Box$, which is the Carathéodory function with inequality

$$\left|a_{y}(x,y)\right| \leq a'(x) + b' \left|y\right|^{q-2} \forall x \in \Omega, y \in \Box,$$

where $a' \in L_{a/(a-2)}(Q)$, b' > 0. We determine the spaces

$$Y_* = L_2(0,T; H_0^1(\Omega)), V_* = Y'_*, Y_0 = \{ p | p \in Y_*, g_0 p \in L_2(Q) \}, V_0 = Y'_0,$$

where

$$g_0 = g_0(\xi) = \sqrt{a_y(\xi; y[u](\xi))}.$$

Let $p[\mu]$ be the solution of the boundary problem

$$-\frac{\partial p[\mu]}{\partial t} - \Delta p[\mu] + a_y(x,t;y[u]) p[\mu] = \mu_Q, \ (x,t) \in Q,$$
(5)

$$p[\mu] = 0, (x,t) \in \Sigma,$$
 (6)

$$p[\mu](x,T) = \mu_{\Omega}, \ x \in \Omega, \tag{7}$$

where $\mu = (\mu_0, \mu_\Omega)$.

Theorem 4. The mapping $y[\cdot]: V \to Y$ for the problem (1) – (3) has the $(V_*, Y_*; V_0, Y_0)$ extended derivative y'[v] in the arbitrary point $u \in V$. Besides it exists the linear continuous operator $y'_T[u]: V \to L_2(\Omega)$, such as

$$\left\{y[u+\sigma h](T)-y[u](T)\right\}/\sigma \to y'_T[u]h \text{ in } L_2(\Omega)$$

if $\sigma \rightarrow 0$. We have also the equality

$$\int_{Q} \mu_{Q} y'[u] h dQ + \int_{\Omega} \mu_{\Omega} y'_{T}[u] h d\Omega = \int_{Q} p[\mu] h dQ \ \forall h \in V_{0}, \mu_{Q} \in X'_{0}, \mu_{\Omega} \in L_{2}(\Omega).$$

We suppose that the derivative $F(\xi; \cdot)$ has the continuous partial derivatives $F'_0(\xi; \zeta)$, $F'_1(\xi; \zeta)$, ..., $F'_n(\xi; \zeta)$ for $\zeta \in \square^{n+1}$, besides the following inequalities

$$\left|F(\xi;\zeta)\right| \le a_{F}(\xi) + b_{F}\sum_{i=0}^{n+1} \left|\zeta_{i}\right|^{2}, \ \left|F_{j}'(\xi;\zeta)\right| \le a_{j}(\xi) + b_{j}\sum_{i=0}^{n+1} \left|\zeta_{i}\right|, \ j = 0, ..., n+1,$$

are true, where

$$a_F \in L_1(Q), a_j \in L_2(Q), b_F > 0, b_j > 0, j = 0, ..., n+1$$

We have the possibility to prove the differentiability with respect to the subspace [9] of the regularizing functional now.

Theorem 5. The functional I_k is differentiable with respect to the subspace V_* in the arbitrary point $u_k \in V$, besides its derivative satisfies to the equality

$$I_k'(u_k) = p_k + \alpha u_k,$$

where p_k is the solution of the boundary problem

$$-\frac{\partial p_k}{\partial t} - \Delta p_k + a_y \left(x, t; y_k \right) p_k = F_0' \left(x, t; y_k, \nabla y_k \right) - \operatorname{div} F_{\nabla}' \left(x, t; y_k, \nabla y_k \right), \ (x, t) \in Q,$$
(8)

$$p_k = 0, (x,t) \in \Sigma, \tag{9}$$

$$p_k(x,T) = \left[y_k(x,T) - w(x) \right] / \varepsilon_k, \ x \in \Omega,$$
(10)

and $y_k = y[u_k]$.

It is known that the functional, which are differentiable with respect to the subspace V_* of the space V, has the minimum on the convex close subset U from V in the point u, if the variational inequality

$$\langle J'(u), v-u \rangle \ge 0 \ \forall v \in U(u)$$

is true, where $\langle \lambda, v \rangle$ is the value of a linear continuous functional λ in the point v. The set U(u) consists of all points $v \in U$, satisfying to the inclusion $(v-u) \in V_*$. Then we obtain the necessary condition of optimality for the problem P_k by means of the Theorem 5.

Theorem 6. The solution of the problem P_k satisfies to the variational inequality

$$\int_{Q} (\alpha u_{k} + p_{k})(v - u_{k}) dQ \ \forall v \in U(u_{k}).$$
⁽¹¹⁾

Thus the solution of the regularization problem can be finding from the system, which includes the boundary problem (1) - (3) for $v = u_k$, the conjugate system (8) - (10) and the variational inequality (11). It becomes the approximate solution of the initial optimal control problem for large enough value k.

We give as addition a result of the controllability of our system.

Definition 3 [10]. The system (1) – (3) is approximate controllable if the set $Y_T = \left\{ y[v](T) \middle| v \in V \right\}$

is dense in the space $L_2(\Omega)$.

Theorem 7. We suppose that the following condition

 $n \leq 2$ or $q \leq 2n/(n-2)$ for $n \geq 3$.

are true. Then the system (1) - (3) is approximate controllable.

This result gives some information about the set U_d .

References

- 1. H. Gajewski, K. Gröger, K. Zacharias K. Nichtlineare Operatorgleichungen und Operatordifferentiagleichungen. Berlin, Academie Verlag (1974).
- H.O. Fattorini. Some Remarks on Complete Controllability // SIAM J. Control. 1966. No. 4. – PP. 391-402.
- 3. H.R. Henríquez, E. Hernández. Stabilization of Linear Distributed Control Systems with Unbounded Delay // J. Math. Anal. Appl. 2005. Vol. 307, no. 1. PP. 321-338.
- 4. A.I. Egorov. About conditions of optimality in a control problem of the heat transfer process (In Russian) // J. Comput. Math. and Math. Phys. 1972. № 3. PP. 791-799.
- J.P. Raymond, H. Zidani. Pontryagin's principle for state-constrained control problems governed by parabolic equations with unbounded controls // SIAM J. Contr. Optim. – 1998. – Vol. 36, no. 6. – P. 1853-1879.
- M.D. Voisie. First-order necessary conditions of optimality for strongly monotone nonlinear control problems // J. Optim. Theory Appl. – 2003. – Vol. 116, no. 2. – PP. 421-436.
- E. Casas, J.C. Reyes, F. Tröltzsch. Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints // SIAM J. Optim. – 2008. – Vol. 19, no. 2. – PP. 616-643.
- S. Serovajsky Calculation of Functional Gradients and Extended Differentiation of Operators // Journal of Inverse and Ill-Posed Problems. – 2005. – Vol. 13, no. 4. – PP. 383-396.
- 9. V.I. Averbuh, O.G. Smolyanov. Different definitions of derivatives in linear topological spaces (In Russian) // Uspehy Math. Nauk. 1968. Vol. 23, no. 4. PP. 67-116.
- 10. J.L. Lions. Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles. Paris, Dunod, Gauthier-Villars (1968).