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In this paper the queueing system with input semi-markovian [1-4] process and unlimited
number of servers is considered. The arrived demand occupies any of free servers. Durations of
various demands services are stochastic independent, equally distributed to the exponential law
with rate p. After service, the demand leaves the system.

For a definition of semi-markovian process, we are considering two-dimensional
homogeneous markovian process {&(n), 1(n)} with discrete time and semi-markovian matrix
A(x) with elements A, (x), which defined by following equation.

Avk(x):P{ﬁ(n+1)zk,r(n+1)<x|§(n)=v}. (D)

Here &(n) is ercodic Markov chain with discrete time and matrix P = [p,] probability of
transition for one step [2], which defined by equation

P=A(»). )

This chain for semi-markovian process is called embedded Markov chain. Process t(n)

accepts non-negative values from continuous set.
Stochastic process of homogeneous events

f1<t2 <"'<tn<tn+l<"'

is called semi-markovian process (SM-process), set by matrix 4 (x) if for the moments ¢,
approaches of its events of the following equations are right

tpy1 =ty +7(n+1).
In general case for the elements of semi-markovian matrix has the multiplicative form which
can be written as

A (x) =Gy (x)ka ’
where G, (x) is the conditional distribution function of an interval length of semi-markovian
process on conditions that in the beginning of this interval the embedded Markov chain &(n) has
value v, and at the end of it will accept value k. Matrix A(x) can be written as Hadamard
product
A(x)=G(x)*P 3)
two matrixes G (x) and P.

The main purpose of this paper is the finding of probability distribution of the server number
in queueing system.

Let the system operates in a steady-state conditions [5-7]. Denote i(z) — the server number at
the moment 7, then stationary probability distribution of values of process i(f) denotes & (i) = P
{i (H)=1i}.

We consider three-dimensional process {s (¢), z (¥), i (£)} which is markovian [4]. Here z(¢) —
ia the length of an interval from time moment ¢ till the moment of approach of the next event in
the considered SM-process, and stochastic process s(f) with piecewise constant realizations
continuous at the left, defined by equality

s(t)=¢&(n+1),if 1, <t <1,,,.
From probability distribution
P(s,z,i,t) = P{s(t) = 5,2(t) < z,i(t) = i}
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of markovian process {s (?), z (¢), i(t)} we pass on to one-dimensional marginal distribution

(i) = P(s,,i) .

For marginal distributions it is easy to obtain the system of Kolmogorov differential
equations which we rewrite for stationary probability distribution P (s, z, i) = P (s, z, i, ) as

OP(s,z,i) 0P(s,0,i) PO0IZD 4 =0 (@)

= P(s,z,0)ip+ P(s,z,i+1) (i +1)p+

0z 0z 0z
Denote
H(s,z,u)= i e P(s,z,i), ®)]
i=0
where j=+/~1 —imaginary unit.
For these functions we obtain differentially-matrix equation
O0H(z,u) . _wu\OH (z,u) OHO,u)( ; B
T+]u(l—e ) . + > {e A(z)—I}—O, (6)

where
H(z,u)={H(1,z,u),H(2,z,u),} .

Solution H(z, u) of differentially-matrix equation (6) satisfies to the condition

H(z,0)=R(z), (7)
and define characteristic function of the i (#) by equation

h(u) = M’ = H(0,u)E .

where function R(z) is the stationary probability distribution of two-dimensional markovian
process {s(?), z(¢)}.

The condition of limit rare changes states of SM-process

The queue SM | M | oo will investigated in asymptotic condition of limit rare changes states of
input SM-process [6, 8, 9].

The condition of limit rare changes of states semi-markovian process is formalized by
following equality for matrix P transitions probabilities of its embedded Markov chain

P=1+38-Q, ®)

where 6 — some small rate (0 — 0), and / — an identity diagonal matrix.

Matrix Q with elements g, is similar to matrix infinitesimal characteristics and has the same
properties, that is by £ # v matrix elements ¢,,> 0, and also equals are right

%qvk =0, X qu = -

k#v
Semi-markovian matrix for SM-process in condition of limit rare changes states
A(x,8)=G(x)*{I+5-0}. C)
Solution of the differential equation (6) and vector of stationary probability distribution of
process {s(?), z(f)} in asymptotic condition of limit rare changes states denote accordingly
H(z, u, ) and R(z, J).
Then according to the entered notation the differentially-matrix equation (6) and a condition
(7) we will write down as
M) | (1_6_ i ) OH (2,u,8) _ OH(0,u,9)

{ef“A(z,a)—l} =0,

0z Ou 0z (10)
H(z,0,5) = R(z,5).
Here vector R(z, 0) with element R(s, z, d) is given by
R(z,S):Kl(S)rjz'(P(S)—A(x,S))dx, (11)
0

where 7 is stationary probability distribution of embedded Markov chain, and value x;(3) is
defined by equation
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K (8)= , (12)
and matrix 4(J) is given by
A(6)=T(P(8)—A(n8»dk. (13)

0
According to Poincare's theorem [10] about analytical dependence of the solution on the rate
there is a limit
lim H(z,u,d) = F(z,u), 14)
5—0

Then in the system (10), according to (14), we realize limiting transition at 6 — 0. For
functions F (s, z, u), according to a view of matrix 4 (z), we obtain the set of independent
differential equations

OF (s,z,u) +jp(1—e_j” ) OF (s,z,u) N OF (s,0,u) {ej”
0z ou 0z

G, (2)-1}=0,

(16)
F(s,0,u)= R(s,z),

where

R(z) :éi_r)r(l)R(z,S).

Condition of a growing servicetime
Asymptotic of thefirst order

The equation (16) will be solved in asymptotic condition of a growing service time [4, 6, 7],
let p — 0. Denote p = € and in differential equation of the system (16) replacements are realized
u=gew, F(s,z,u)=F(s,z,we), a7
for F(s, z, w, €) obtain equation
OF (s,z,w,e) . _jew) OF (s,2,w,€) = OF(5,0,w,€) ( s\, B
> +](1 e ) o + p {e G, (z) 1} =0. (18)
We consider such class of solution F(s, z, u) the equations (16) for which, in view of (22),
functions F(s, z, w, €) possess following properties: there are finite limits at € — 0 of functions
F (s, z, w, €) and their derivatives on w, on z and on z in zero.
Theorem1. Solution of the differential equation (18) at € — 0 is given by
Fi(s,z,w) = R(s,z)exp{ jwi, } , (19)
where stationary probability distribution R(z) of two-dimensional markovian process {s(f), z(¢)}
is given by

R =1lim R(z,0) = 1-4 dx .
(2) lim (z,8) Klrg( (x))dx
Here A(x):éir%A(x,S) — semi-markovian matrix, » — stationary probability distribution of
—

embedded Markov chain, and value «; is defined by equality
1
=1li d)=—+
K = limi (0) =—-
where matrix A4 is defined as

A= [(1-A(x))dx .

o8

Corollary. Function
Iy (u) = exp jurcy /1
we will be called an asymptotic of the first order of characteristic function %(u) of the process

(7).
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The asymptotic of second order

For more detailed investigation of considered queue system, we will obtain the asymptotic of
the second order.
In the differential equation of the system (16) we realize the replacement

F(s,z,u) = F? (s, z,u) exp{ jux, /p} . (20)
There have
CaRULUN juf1-e ){—aF(Z)(S’Z’”) +fﬁ}+—aF G (G, (z)-1}=0. 1)
oz Ou u z .
Denote £* = 1, in equation (21) realize replacement
u=gw, F® (s,z,u) = F,(s,z,w,€), (22)
and obtain
Ohy(s,2,w8) (S(’;’ ) + js(l —e )—an (Sé: we) K (1 —e /" ) +—6F2 (S’aj’ ) {ejWSGSS (2)- 1} =0. (23)

We consider such class of solution F ? (s, z, u) the equations (21) for which, in view of (22),
functions F; (s, z, w, €) possess following properties: there are finite limits at ¢ — 0 of functions
F, (s, z, w, €) and their derivatives on w, on z and on z in zero.

Theorem 2 Solution of the differential equation (23) at € — 0 is given by

N2
Fy(5,2,w) = R(s.2) exp{(’ 2”) Kz} : (24)
where value k, is defined by equation
o, (0
,=LOp, (25)
oz

and vector-function f; (z) satisfies to condition f; (o) £ = 0 and is the equation solution

L9 LD (G, () -1)+ BEDG, (2)-xR(5.2) =0. (26)
V4 4

Corollary. Function

hz(u)—exp{ (ju) ﬁ}
u

2

we will be called the asymptotic of the second order of characteristic function A(ux) of the 0
process i(f).

Conclusion

In this paper is found the asymptotic probability distribution of the server number in queue
SMIMlew in the condition of limit rare changes of conditions in the SM-process and the
condition of growing service time. The obtained distribution can be multimodal.
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