THE RESEARCH OF RQ-SYSTEM WITH INPUT MMP PROCESS*

Anatoly Nazarov ${ }^{1}$, Inna Semenova ${ }^{2}$
Tomsk State University, Tomsk, Russia
¹nazarov@fpmk.tsu.ru,ㄹnna_ac@mail.ru

We consider single-line RQ-system (Retrial queue) with a recall source and incoming markovian modulate Poisson process (MMP-process) set by matrix of infinitesimal characteristics Q and intensity λ_{n}.

Suppose, that the demand which has found the service free, occupies it for service during the random time distributed to the exponential law with rate μ. If the device is occupied, the arrived demand passed in a recall source in which carries out the random delay which duration has exponential distribution with rate σ. After that demand become to service with retrial of its capture. If the service is free, the demand from the recall source occupies it on a random inservice time, if it is occupied the demand instantly comes back in the recall source for realization of the following delay of random duration.

Let $i(t)$ - demands number in the recall source, $n(t)$ - state of Markov chain in MMPprocess, and $k(t)$ - state of service set, i.e.:

$$
k(t)=\left\{\begin{array}{l}
0, \text { service is free }, \\
1, \text { service is buzy } .
\end{array}\right.
$$

Denote

$$
P\{k(t)=k, n(t)=n, i(t)=i\}=P\{k, n, i, t\}
$$

It is necessary to find the probability distribution of demands number $i(t)$ in the recall source.

For probability distribution $P(k, n, i, t)$ of states $\{k, n, i\}$ considered RQ-system Kolmogorov's [1] differential equations is given by

$$
\left\{\begin{align*}
\frac{\partial P(0, n, i, t)}{\partial t}= & -\left(\lambda_{n}+i \sigma\right) P(0, n, i, t)+\sum_{v} P(0, v, i, t) q_{v n}+\mu P(1, n, i, t), \tag{1}\\
\frac{\partial P(1, n, i, t)}{\partial t}= & -\left(\lambda_{n}+\mu\right) P(1, n, i, t)+\sum_{v} P(1, v, i, t) q_{v n}+\lambda_{n} P(0, n, i, t)+ \\
& +\sigma(i+1) P(0, n, i+1, t)+\lambda_{n} P(1, n, i-1, t) .
\end{align*}\right.
$$

Method of the asymptotic semi-invariants

Applying system (1) for stationary distribution $P(k, n, i, t)=P(k, n, i)$, equate system defining characteristic functions [2]

$$
\begin{align*}
& H(k, n, u, t)=\sum_{i=0}^{\infty} e^{j u i} P(k, n, i, t)=P\{k(t)=k, n(t)=n\} M\left\{e^{j u i(t)} \mid k(t)=k, n(t)=n\right\}, \\
& \left\{\begin{array}{l}
-\sigma j \frac{\partial H(0, u)}{\partial u}=H(0, u)\{Q-\Lambda\}+\mu H(1, u), \\
\sigma j e^{-j u} \frac{\partial H(0, u)}{\partial u}=H(0, u) \Lambda+H(1, u)\left\{Q+\left(e^{j u}-1\right) \Lambda-\mu I\right\},
\end{array}\right. \tag{2}
\end{align*}
$$

the solution $\{H(0, u), H(1, u)\}$ satisfies to normality condition

$$
H(0,0)+H(1,0)=R,
$$

where Q is matrix of infinitesimal characteristics of Markov chain $k(t), \Lambda$ is the diagonal matrix with elements λ_{n} on the main diagonal, I is identity matrix, and row vectors

[^0]\[

$$
\begin{aligned}
& H(0, u)=\{H(0,1, u), H(0,2, u), \ldots, H(0, N, u)\} \\
& H(1, u)=\{H(1,1, u), H(1,2, u), \ldots, H(1, N, u)\}
\end{aligned}
$$
\]

For compact notation of the further calculations, we write down the system (2) in the following

$$
\begin{gather*}
\sigma j \frac{\partial H(u)}{\partial u} A(j u)=H(u) B(j u), \tag{3}\\
H(0) E=1 \tag{4}
\end{gather*}
$$

where E - identity row vector, and block matrixes $A(j u)$ and $B(j u)$ is given by

$$
A(j u)=\left(\begin{array}{ccc}
-I_{N} & \vdots & e^{-j u} I_{N} \\
\ldots & \vdots & \cdots \\
0_{N} & \vdots & 0_{N}
\end{array}\right)=\sum_{v=0}^{\infty} \frac{(j u)^{v}}{v!} A_{v}, B(j u)=\left(\begin{array}{ccc}
\mathrm{Q}-\Lambda & \vdots & \Lambda \\
\cdots & \vdots & \cdots \\
\mu I & \vdots & Q+\left(e^{j u}-1\right) \Lambda-\mu I
\end{array}\right)=\sum_{v=0}^{\infty} \frac{(j u)^{v}}{v!} B_{v} .
$$

The Asymptotic of first order

For a finding the asymptotic of first order denote $\sigma=\varepsilon$, and in the equation (3) realize replacements [3]

$$
u=\varepsilon w, \quad H(u)=F_{1}(w, \varepsilon) .
$$

Then the equation (3) becomes

$$
\begin{equation*}
j \frac{\partial F_{1}(w, \varepsilon)}{\partial w} A(j \varepsilon w)=F_{1}(w, \varepsilon) B(j \varepsilon w) \tag{5}
\end{equation*}
$$

and equality (4) we write down as follows

$$
\begin{equation*}
F_{1}(0, \varepsilon) E=1 . \tag{6}
\end{equation*}
$$

In problem (5-6) we execute limiting transition at $\varepsilon \rightarrow 0$, get system

$$
\left\{\begin{array}{l}
j \frac{\partial F_{1}(w)}{\partial w} A_{0}=F_{1}(w) B_{0} \\
F_{1}(0) E=1
\end{array}\right.
$$

Solution $F_{1}(w)$ of this system we write down in the form of product

$$
\begin{equation*}
F_{1}(w)=R \Phi_{1}(w)=R \cdot \exp \left\{j w \kappa_{1}\right\}, \tag{7}
\end{equation*}
$$

where vector R is defined by the system

$$
\left\{\begin{array}{l}
R\left(B_{0}+\kappa_{1} A_{0}\right)=0 \tag{8}\\
R E=1
\end{array}\right.
$$

and $\Phi_{1}(w)$ is the scalar function. Values of κ_{1} are defined as follows.
We combine all equations of system (5), postmultiplying this equation on identity column vector E, and get equality

$$
j \frac{\partial F_{1}(w, \varepsilon)}{\partial w} A(j \varepsilon w) E=F_{1}(w, \varepsilon) B(j \varepsilon w) E
$$

in which matrixes are expanded

$$
A(j \varepsilon w)=A_{0}+j \varepsilon w A_{1}+\mathrm{O}\left(\varepsilon^{2}\right), B(j \varepsilon w)=B_{0}+j \varepsilon w B_{1}+\mathrm{O}\left(\varepsilon^{2}\right)
$$

we get

$$
j \frac{\partial F_{1}(w, \varepsilon)}{\partial w} j \varepsilon w A_{1} E=F_{1}(w, \varepsilon) j \varepsilon w B_{1} E+\mathrm{O}\left(\varepsilon^{2}\right)
$$

Limiting transition is realized here at $\varepsilon \rightarrow 0$ by substituting (7), we get the nonlinear scalar equation relative to κ_{1}

$$
R\left(B_{1}+\kappa_{1} A_{1}\right) E=0
$$

where vector $R=R\left(\kappa_{1}\right)$ is defined by system (8).
Function

$$
h_{1}(u)=\exp \left\{j u \frac{\kappa_{1}}{\sigma}\right\}
$$

we will be called the asymptotic of the first order of characteristic function $H(u)=H(0, u)+H$ $(1, u)$ the demands number $i(t)$ in a recall source, and value κ_{1} / σ - the asymptotic semiinvariant of the first order.

The Asymptotic of second order

For a finding the asymptotic of second order in the equation (3) we realize the following replacement

$$
H(u)=\exp \left\{j \frac{u}{\sigma} \kappa_{1}\right\} H_{2}(u) .
$$

Then for vector function $H_{2}(u)$ we get the equation

$$
\begin{equation*}
\sigma j \frac{\partial H_{2}(u)}{\partial u} A(j u)=H_{2}(u)\left\{B(j u)+\kappa_{1} A(j u)\right\} \tag{9}
\end{equation*}
$$

where solution $\mathrm{H}_{2}(u)$ satisfies to the condition

$$
\begin{equation*}
H_{2}(0) E=1 . \tag{10}
\end{equation*}
$$

Now, in the system (9-10) denote $\sigma=\varepsilon^{2}$, and realize replacements

$$
u=\varepsilon w, \quad H_{2}(u)=F_{2}(w, \varepsilon) .
$$

There have

$$
\begin{gathered}
j \varepsilon \frac{\partial F_{2}(w, \varepsilon)}{\partial w} A(j \varepsilon w)=F_{2}(w, \varepsilon)\left\{B(j \varepsilon w)+\kappa_{1} A(j \varepsilon w)\right\}, \\
F_{2}(0, \varepsilon) E=1
\end{gathered}
$$

Further, we realize similar operations, as in the first asymptotic, we get the asymptotic of the second order of characteristic function $H(u)$ the demands number $i(t)$ in the recall source

$$
h_{2}(u)=\exp \left\{j u \frac{\kappa_{1}}{\sigma}+\frac{(j u)^{2}}{2} \frac{\kappa_{2}}{\sigma}\right\}
$$

where

$$
\kappa_{2}=\frac{-\left\{g_{1}\left(B_{1}+\kappa_{1} A_{1}\right) E+\frac{1}{2} R\left(B_{2}+\kappa_{1} A_{2}\right) E\right\}}{g\left(B_{1}+\kappa_{1} A_{1}\right) E+R A_{1} E}
$$

and value κ_{2} / σ is the asymptotic semi-invariant of the second order and vectors g and g_{1} are arbitrary particular solution of following equations systems

$$
\begin{gathered}
g\left(B_{0}+\kappa_{1} A_{0}\right)+R A_{0}=0 \\
g_{1}\left(B_{0}+\kappa_{1} A_{0}\right)+R\left(B_{1}+\kappa_{1} A_{1}\right)=0
\end{gathered}
$$

Asymptotic some higher order

For a finding the asymptotic some higher order we apply a method of a mathematical induction [4].

Let vector-function $H_{n}(u)(n \geq 3)$ satisfies the equation

$$
\begin{equation*}
\sigma j \frac{\partial H_{n}(u)}{\partial u} A(j u)=H_{n}(u)\left\{B(j u)+\kappa_{1} A(j u)+\sum_{\mathrm{v}=1}^{n-2} \frac{(j u)^{v}}{v!} \kappa_{v+1} A(j u)\right\} \tag{11}
\end{equation*}
$$

in which all κ_{v} are known by $v=1,2, \ldots, n-1$.
Let applying the equation (11) value of κ_{n} has found, then in (11) we execute replacement

$$
H_{n}(u)=\exp \left\{\frac{(j u)^{n}}{n!} \frac{\kappa_{n}}{\sigma}\right\} H_{n+1}(u)
$$

And get the equation for the vector-function $H_{n+1}(u)$

$$
\begin{equation*}
\sigma j \frac{\partial H_{n+1}(u)}{\partial u} A(j u)=H_{n+1}(u)\left\{B(j u)+\kappa_{1} A(j u)+\sum_{\mathrm{v}=1}^{n-1} \frac{(j u)^{v}}{v!} \kappa_{v+1} A(j u)\right\} \tag{12}
\end{equation*}
$$

solution $H_{n+1}(u)$ of this equation satisfies to a condition

$$
\begin{equation*}
H_{n+1}(0) E=1 \tag{13}
\end{equation*}
$$

Further, applying the problem (12-13), we will find value of κ_{n+1}. For this in the problem (1213) denote $\sigma=\varepsilon^{n+1}$, and execute replacements

$$
u=\varepsilon w, \quad H_{n+1}(u)=F_{n+1}(w, \varepsilon)
$$

we get

$$
\begin{gathered}
j \varepsilon^{n} \frac{\partial F_{n+1}(w, \varepsilon)}{\partial w} A(j \varepsilon w)=F_{n+1}(w, \varepsilon)\left\{B(j \varepsilon w)+\kappa_{1} A(j \varepsilon w)+\sum_{\mathrm{v}=1}^{n-1} \frac{(j \varepsilon w)^{v}}{v!} \kappa_{\mathrm{v}+1} A(j \varepsilon w)\right\}, \\
F_{n+1}(0, \varepsilon) E=1 .
\end{gathered}
$$

Then, realizing similar operations, as in the first, and in the second asymptotics, we get the asymptotic of some higher order of characteristic function $H(u)$ the demands numbers $i(t)$ in the recall source

$$
h_{n+1}(u)=\exp \left\{\sum_{v=1}^{n+1} \frac{(j u)^{v}}{v!} \frac{\kappa_{v}}{\sigma}\right\},
$$

where value κ_{n+1} is defined by equality

$$
\begin{aligned}
\kappa_{n+1}= & -\left\{g_{n}\left(B_{1}+\kappa_{1} A_{1}\right) E+\frac{1}{n+1} \sum_{v=1}^{n-1} C_{n+1}^{v} f_{v}\left(B_{m+1-v}+\sum_{k=0}^{n-v} C_{n+1-v}^{k} \kappa_{k+1} A_{n+1-v-k}\right) E+\right. \\
& \left.+\frac{1}{n+1} R\left(B_{n+1}+\sum_{k=0}^{n-1} C_{n+1}^{k} \kappa_{k+1} A_{n+1-k}\right) E\right\} /\left\{g\left(B_{1}+\kappa_{1} A_{1}\right) E+R A_{1} E\right\},
\end{aligned}
$$

and vectors g and g_{n} are defined by inhomogeneous systems of the linear algebraic equations

$$
\begin{gathered}
g\left(B_{0}+\kappa_{1} A_{0}\right)+R A_{0}=0 \\
g_{n}\left(B_{0}+\kappa_{1} A_{0}\right)+\sum_{\mathrm{v}=1}^{n-1} C_{n}^{v} f_{v}\left(B_{n-v}+\sum_{k=0}^{n-v} C_{n-v}^{k} \kappa_{k+1} A_{n-v-k}\right)+R\left(B_{n}+\sum_{k=0}^{n-1} C_{n}^{k} \kappa_{k+1} A_{n-k}\right)=0 .
\end{gathered}
$$

and any additional conditions defining particular solution of these systems from the set of all their decisions, and vectors f_{v} are defined by decomposition.

$$
f_{\mathrm{v}}=g_{\mathrm{v}}+\kappa_{\mathrm{v}+1} g, v=\overline{1, n-1}
$$

Thus, the research of RQ-systems by the method of asymptotic semi-invariant is carried out in this paper. Asymptotic probability distribution of the demands number in a recall source of some order is got.

References

1. Гнеденко Б.В. Введение в теорию массового обслуживания / Гнеденко Б.В., Коваленко И.Н. Москва: ЛКИ, 2007. 400 с.
2. Назаров А.А. Теория вероятностей и случайных процессов / Назаров А.А., Терпугов А.Ф. Томск: НЛТ, 2006. 204 с.
3. Назаров А.А., Семенова И.А. Сравнение асимптотических и допредельных результатов анализа системы М/М/1/ИПВ.// Сборник научных статей. - Минск, 2010. Вып. 3. -С.272-277.
4. Назаров А.А. Метод асимптотического анализа в теории массового обслуживания / Назаров А.А., Моисеева С.П. Томск: НЛТ, 2006. 112 с.

[^0]: * Work is carried out at support of the analytical departmental target program: «Development of scientific potential of the higher school (2009-2010)» of Federal agency by education (project № 4781)

