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In many statistical applications the data does not come from an independent stochastic process. 
A standard assumption of weak dependence is given by the strong mixing condition: 
Definition 1. Let ( )n n NX

∈
 be a stationary process. Then the strong mixing coefficient is given 

by 

( ) ( ) ( ) ( ){ }1sup : , ,n
n kk P A B P A P B A F B F n Nα ∞
+= ∩ − ∈ ∈ ∈  

where l
aF  is the σ − field generated by r. v. ’s ,..., .,a lX X and ( )n n NX

∈
 is called strongly 

mixing, if ( ) 0kα → as k →∞ . 
For further information on strong mixing and a detailed description of other mixing conditions 
see Doukhan [4] and Bradley [2].  
In many statistical applications, for example in the determination of confidence bands, one faces 
the task to compute the distribution of a statistic ( )1,...,n n nT T X X= . Thus is usually rather 

difficult, as the distribution F of iX  is unknown, so one often has to use approximation by the 
normal distribution. Efron [5] proposed the bootstrap as an alternative. For i.i.d. data, the 
validity of the bootstrap was established by Bickel and Freedman [1], and by Singh [11]. Using 
Edgeworth expansion, one can often show that the bootstrap works better than normal 
approximation, see Hall [6] for details. Computation of the distribution of nT becomes even 
more difficult when the observations are dependent, e.g., in the case of the sample mean 
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= ∑ , one gets for weakly dependent data under some technical assumptions 

( )
_

2
1 0,nn X EX N σ⎛ ⎞− →⎜ ⎟
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 in  distribution,  where 

[ ] [ ]2
1 1 1

1
2 , i

i
Var X Cov X Xσ

∞

+
=

= + ∑ .So one has not only the variance to estimate, but 

also the autocovariances of the process. The naïve bootstrap can fail under dependence, as Singh 
[11] mentioned. Therefore, block bootstrappings method are commonly used for nonparametric 
inference under dependence. There are different ways to resample blocks, for example the 
circular block bootstrap or the moving block bootstrap (for a detailed description of the different 
bootstrapping methods see Lahiri [7]. For the circular block bootstrap, Shao and Yu [10] have 

shown that under strong mixing the distribution of the block bootstrap version *
nX of the 

sample mean converges almost surely to the same distribution as the sample mean nX . 

Peligrad [8] has proved asymptotic normality of *
nX  under another set of conditions, which 

does not necessarily imply the central limit theorem for nX . Radulovic [9] has established weak 
consistency under very weak conditions. We consider the nonoverlapping bootstrap, proposed 
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by Carlstein [3], for the sample mean and for U-statistics. Let ( )n n NX
∈

 be a sequence of  

r.v.’s. Let p N∈  be the block length such that ( ) ( ),p p n o n= =  p →∞  as n →∞ . 
We introduce the following blocks of indices and r.v.’s: 

( )( )1 1,..., ,i ipi pI X X− +=  

( ){ }1 1,..., ,iB i p ip= − +  1,...,i k=  

where ( ) nk k n
p

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 is the number of blocks. We consider a new sample * *

1 ,..., kpX X , 

which is constructed by choosing randomly and independently blocks k times with  

( )( )* *
1

1,..., p iP X X I
k

= =  , 1,2,..., .i k=  

As a bootstrap version of the sample mean we consider 

* *
,

1

1 .
kp

n kp i
i

X X
kp =

= ∑  

With P*,E*, var* we denote the probability, expectation and variance conditionally on 
( )n n NX

∈
. Note that  

* * *
, ,

1

1 : .
kp

n kp i n kp
i

E X X X
kp =

= =∑  

In what follows, we denote by 
_

nX  the sample mean of the observations 1,..., ,nX X  by 

( )20,N σ  a Gaussian r.v. with mean zero and variance 2σ  and by {}1 ⋅  an indicator function. 

Here we will give results for the sample mean only. First we will give theorems for general 
stationary sequences which are analogues to the results of Peligrad [8], and Shao and Yu [10]. 
Theorem  1. Let { }, 1iX i ≥  be a stationary sequence of r.v’.s such that 1EX μ=  and 

1VarX < ∞ .Assume that the following conditions hold 

(1)              Var
1 _

22 0,nn X μ σ⎛ ⎞− → >⎜ ⎟
⎝ ⎠

 

(2)             ( )
1 _
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  in distribution, 

(3)             
1 _
2 , 0n kpp X μ⎛ ⎞− →⎜ ⎟
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    a. s. ,  
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∑ ∑ ∑        a. s. 
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 for any 0ε > . Then the following takes place as n →∞  

                        ( )* * 2
,n kpVar kp X σ→           a. s. 

              ( )( )
_
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, ,sup 0n kp n kp n

x R
P kp X X x P n X xμ

∈

⎛ ⎞⎛ ⎞− ≤ − − ≤ →⎜ ⎟⎜ ⎟
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  a.s. 

Theorem 2.  Let ( )n n NX
∈

 be a stationary sequence of r.v.’s. with 1EX μ= , 

Var 1X < ∞ . Assume that conditions (1), (2), (4) and for each fixed x R∈  
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jj Bi
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i
X xk i
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kp pμ

μ
∈

⎧ ⎫⎪ ⎪− ≤= =⎨ ⎬
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∑ ∑     a.s. 

hold. Then the statement of Theorem 1 remains true. 
Theorem 3. Let ( )n n NX

∈
 be a stationary sequence of  bounded almost surely r.v. ’s  with 

1EX μ= . Assume that (3) and following conditions hold 
 

                                         
2

0p
n
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nVarS

n
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                          ( )
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∑ ∑      a.s.  as  n →∞ . 

Then almost surely as n →∞  

(6)                            *Var ( )* 2
,n kpkp X σ→ , 

(7)                           ( ) ( )* 2
, , 0,n kp n kpkp X X N σ− →  .     

 
We formulate theorems under assumptions on the strong mixing coefficients which are 
analogues to the results of Peligrad [8] and Shao, Yu [10]. 
Theorem  4.  Let ( )n n NX

∈
 be a stationary sequence of strong mixing r.v.’s with 

1EX μ=  and ( )
1

2 2
1E X δ δ+ + < ∞  for some 0 δ< ≤ ∞ . Assume  

                             ( ) 1n Cnα −≤  for some 0,C >
2r δ
δ
+

> , 

                            ( )p n Cnε≤  for some 0 1ε< <  and 
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(8)                        ( ) ( )2lp n p=  for  12 2l ln +< ≤ , 1,2,...l =  

Then  ( )2 2
1 112 , iiEX Cov X Xσ ∞

== + < ∞∑  and in the case 2 0σ >  the statement 
of Theorem  1   holds. 
Theorem  5.   Let ( )n n NX

∈
 be a stationary sequence of almost surely bounded strongly 

mixing r.v. ’s. Assume that  (5), (8) and the following conditions hold 

                                          
( ) ( )( )2

1
,

n

p n p n
n
α∞

=
< ∞∑  

                                          
( )3

2
1

.
n

p n
n

∞

=
< ∞∑  

Then (6), (7) hold. 
We have established consistency of the bootstrap version of  U-statistics of mixing 
observations, but results will be given in another paper.  
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