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Let {fk’j,k, je N} and {&., ke N}are two independent sets of independent, non-
negative integer-valued and identically distributed random variables. Branching process with
immigration { X, k > 0} we will define following recurrently as

X1

Xo=0, X, =Y & +&.keN. 1)
j=1

Let's assume, that, E&, <o, E&f < oo and we will put
m=E¢&,, o’ =varé,, A= Eg, b’ =varg,.
Branching process (1) is called subcritical, critical and supercritical, if m<1, m=1and

m>1 respectively. Conditions of weak convergence finite-dimensional distributions of
branching processes with immigration have been investigated in [1] and [2]. In [3] it is proved,
that step function of a critical branching process with immigration converges in Skorokhod
topology to a nonnegative diffusion process.

Let now the immigration stream is nonhomogeneous , that ise,, k > 1have various
distributions. We will assume, that 4, = Ee, , b’ = vare, arefinitefor any ke N and
A, =n“L,(n) aan— o, (2
b2 =n’L,(n) as n— o, ©
where «, >0and L, (n), L,(n) are slowly varying functions on infinity.

In the paper [4] functiona limiting theorems for fluctuation critical branching process
with immigration in a case when conditions (2) and (3) are satisfied are proved.
In this paper it is investigated asymptotical behavior of X, in the subcritical a case

when immigration satisfies the conditions (2) and (3). Comparison of the our result with
corresponding result of [4] shows, that asymptotical behavior critical and subcritical branching
processes with immigration essentially differ from each other even in a case when the stream of
immigrations with time growth infinitely increases.

Theorem. Letm< 1, conditions (2) and (3) are satisfied, and A, — o0 ,b> = 0(4,) as
Nn— oo. Then

2t2

itXn—EXn —2 >
Ee " e snsw
Proof. From (1) we have

Xe=mX, ,+ 4, + S +& — 4, (4)

X1

whereS =’ (fk’j - m) . Averaging (4) we have

-1

EX, = mEX, , +A,. (©)

Solving this equation, we receive
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(6)

EX, => m2, .
j=1
From (2) and (3) we can assume that A, and bfis monotonously increasing. We will put
ro= [\/ﬁ } , where [a] denotes the integer part of number a. We have
EX,=> m™ 4+ > m™ . (7)
k=1 k=n-r,+1

. ®

Clearly, that
n-r, _
m™*2, <4, mh 1-m
k=1 ! 1-m
Further we have
PRI A AL )
n—r,+1 1—m _k:n_rn+1 k =" 1-m '
Now from (6) - (9), considering properties of slowly varying functions, we receive
1
ATEX, > — asn—wo, (10)
1-m
Similar reasoning’s, as well as above, lead to arelation
2 2
ar Xy < o >t b, >
/’i’n ﬂn(l_ m)(l_m ) /’i’n (1_m )
From here and from (10), using Chebyshev inequality we obtain
RACH N S, — . (11)
A, 1-m
Further, from (4) and (5) we have
X, —EX, = m(Xk_l— EXk_1)+S( +& —A -
Hence,
n n n
X, —EX, =) m™ M, =>m"™ g + > m (g - 4) (12)
k=1 k=1 k=1
Since the random variables ¢,, k > 1areindependentsand b? = 0( 4, ), we have
1 & 1 & 2n-k)p2 b} 1-m™
var— > m " (g -4 )=—>m <. -0 13
znkz_ll (8=4) /lnkz_ll 2, 1-m? 13)
as n — oo. We consider
n n-r, n
m*S, =Y m"*S + m™*S, (14)
k=1 k=1 k=n-r,+1
n P n _
Applying a known inequality( akj <n"'Y af(a >0,i =1,n) wereceive
k=1 k=1
1 ok NS* k) _ NS a2
var— > m"§ <—> m"var§ =—> m*"Ye’EX, , < (15)
\/ﬁ,_n k=1 ﬂ“n k=1 n k=1
2 2 l
Siin_r' (@2 .m2rn 1 - O . n-r, 'anrn_>OaSn_)oo’
A, "™ 1-m 1-m*  (-m)(1-n¥) 4,
" 50 asn—o.

whereit is considered, that nm
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Let fis characteristic function of & ,—m, F  denote the o —algebra generated by
{ X5, Xy, X} - Using independence of &.;» K, | € Nwefind that

n

it 1 z ms, n n—k.
A k= X m t
Ee reim T oE T fXe (16)
k=n-r,+1 L \/ﬂn }

According to Taylor's formulafor enough big n we have

n—k 2,-~2(n-kK) 2(n-k)

3 LIS U N L e SO (LS (17)
NEN A A

Now, consistently applying known inequalities

eX—ey‘s|x—y|, Rex<0,Rey<0 (18)

and |In(1+x) — x| < X* considering (17), (10), we receive

2 2(n-| k)

o m
n mn—kt - z Xy
E f s —Ee ™ =
(19)
n n—k 2 ~~2(n-k)
<EY X fnf| D E-CM el
k=n-r,+1 \/Tn )’n
n 4 . -4(n-k) 4.4 n 4.4
m t t 1
< Y EX, Tt < T Y mEX < T ———— 5 0answ.
k=n-r,+1 ﬂ’n ﬂ'n k=n-r,+1 ﬂ'n (1_ m)
Clearly, that forany t e R
2(n—k) 2
m
z X, 2 RSN
k=n-r,+1 in (1_ m) (1_ m )
rn
<| sup R Z m?" ) 4 m—2 t2. (20)
n-r,<k<n ﬂ”n 1 k=nr,+1 (1— m)(l—m )
From (10) we obtain that
sup |xk‘1— ! | P 50 asn— x. (21)
n-r,<k<n ﬂ’n 1- m‘
Then from (20), (21) and theorems Lebeguar about convergence we have

e M) a5 500,
Now this and from (19), (13) (16), (12) completes the proof.
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