LIMIT SUBCRITICAL BRANCHING PROCESS WITH IMMIGRATION

Yakubdjan Khusanbaev

Institute of Mathematics and Information Technologies of the National
Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
yakubjank@mail.ru

Let $\left\{\xi_{k, j}, k, j \in N\right\}$ and $\left\{\varepsilon_{k}, k \in N\right\}$ are two independent sets of independent, nonnegative integer-valued and identically distributed random variables. Branching process with immigration $\left\{X_{k}, k \geq 0\right\}$ we will define following recurrently as

$$
\begin{equation*}
X_{0}=0, \quad X_{k}=\sum_{j=1}^{X_{k-1}} \xi_{k, j}+\varepsilon_{k}, k \in N . \tag{1}
\end{equation*}
$$

Let's assume, that, $E \xi_{1,1}^{2}<\infty, E \varepsilon_{1}^{2}<\infty$ and we will put

$$
m=E \xi_{1,1}, \sigma^{2}=\operatorname{var} \xi_{1,1}, \lambda=E \varepsilon_{1}, b^{2}=\operatorname{var} \varepsilon_{1} .
$$

Branching process (1) is called subcritical, critical and supercritical, if $m<1, m=1$ and $m>1$ respectively. Conditions of weak convergence finite-dimensional distributions of branching processes with immigration have been investigated in [1] and [2]. In [3] it is proved, that step function of a critical branching process with immigration converges in Skorokhod topology to a nonnegative diffusion process.

Let now the immigration stream is nonhomogeneous, that is $\varepsilon_{k}, k \geq 1$ have various distributions. We will assume, that $\lambda_{k}=E \varepsilon_{k}, b_{k}^{2}=\operatorname{var} \varepsilon_{k}$ are finite for any $k \in N$ and

$$
\begin{align*}
& \lambda_{n}=n^{\alpha} L_{\alpha}(n) \text { as } n \rightarrow \infty, \tag{2}\\
& b_{n}^{2}=n^{\beta} L_{\beta}(n) \text { as } n \rightarrow \infty, \tag{3}
\end{align*}
$$

where $\alpha, \beta \geq 0$ and $L_{\alpha}(n), L_{\beta}(n)$ are slowly varying functions on infinity.
In the paper [4] functional limiting theorems for fluctuation critical branching process with immigration in a case when conditions (2) and (3) are satisfied are proved.

In this paper it is investigated asymptotical behavior of X_{n} in the subcritical a case when immigration satisfies the conditions (2) and (3). Comparison of the our result with corresponding result of [4] shows, that asymptotical behavior critical and subcritical branching processes with immigration essentially differ from each other even in a case when the stream of immigrations with time growth infinitely increases.

Theorem. Let $m<1$, conditions (2) and (3) are satisfied, and $\lambda_{n} \rightarrow \infty, b_{n}^{2}=o\left(\lambda_{n}\right)$ as $n \rightarrow \infty$. Then

$$
E e^{i t \frac{X_{n}-E X_{n}}{\sqrt{\lambda_{n}}}} \rightarrow e^{-\frac{\sigma^{2} t^{2}}{(1-m)\left(1-m^{2}\right)}} \text { as } n \rightarrow \infty
$$

Proof. From (1) we have

$$
\begin{equation*}
X_{k}=m X_{k-1}+\lambda_{k}+S_{k}+\varepsilon_{k}-\lambda_{k}, \tag{4}
\end{equation*}
$$

where $S_{k}=\sum_{j=1}^{X_{k-1}}\left(\xi_{k, j}-m\right)$. Averaging (4) we have

$$
\begin{equation*}
E X_{k}=m E X_{k-1}+\lambda_{k} . \tag{5}
\end{equation*}
$$

Solving this equation, we receive

$$
\begin{equation*}
E X_{k}=\sum_{j=1}^{n} m^{k-j} \lambda_{j} \tag{6}
\end{equation*}
$$

From (2) and (3) we can assume that λ_{n} and b_{n}^{2} is monotonously increasing. We will put $r_{n}=[\sqrt{n}]$, where $[a]$ denotes the integer part of number a. We have

$$
\begin{equation*}
E X_{n}=\sum_{k=1}^{n-r_{n}} m^{n-k} \lambda_{k}+\sum_{k=n-r_{n}+1}^{n} m^{n-k} \lambda_{k} \tag{7}
\end{equation*}
$$

Clearly, that

$$
\begin{equation*}
\sum_{k=1}^{n-r_{n}} m^{n-k} \lambda_{k} \leq \lambda_{n-r_{n}} m^{r_{n}} \frac{1-m^{n-r_{n}}}{1-m} \tag{8}
\end{equation*}
$$

Further we have

$$
\begin{equation*}
\lambda_{n-r_{n}+1} \frac{1-m^{r_{n}}}{1-m} \leq \sum_{k=n-r_{n}+1}^{n} m^{n-k} \lambda_{k} \leq \lambda_{n} \frac{1-m^{r_{n}}}{1-m} \tag{9}
\end{equation*}
$$

Now from (6) - (9), considering properties of slowly varying functions, we receive

$$
\begin{equation*}
\lambda_{n}^{-1} E X_{n} \rightarrow \frac{1}{1-m} \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

Similar reasoning's, as well as above, lead to a relation

$$
\operatorname{var} \frac{X_{n}}{\lambda_{n}} \leq \frac{\sigma^{2}}{\lambda_{n}(1-m)\left(1-m^{2}\right)}+\frac{b_{n}^{2}}{\lambda_{n}^{2}\left(1-m^{2}\right)} \rightarrow 0
$$

From here and from (10), using Chebyshev inequality we obtain

$$
\begin{equation*}
\frac{X_{n}}{\lambda_{n}} \xrightarrow{P} \frac{1}{1-m} \text { as } n \rightarrow \infty . \tag{11}
\end{equation*}
$$

Further, from (4) and (5) we have

$$
X_{k}-E X_{k}=m\left(X_{k-1}-E X_{k-1}\right)+S_{k}+\varepsilon_{k}-\lambda_{k} .
$$

Hence,

$$
\begin{equation*}
X_{n}-E X_{n}=\sum_{k=1}^{n} m^{n-k} M_{k}=\sum_{k=1}^{n} m^{n-k} S_{k}+\sum_{k=1}^{n} m^{n-k}\left(\varepsilon_{k}-\lambda_{k}\right) \tag{12}
\end{equation*}
$$

Since the random variables $\varepsilon_{k}, k \geq 1$ are independents and $b_{n}^{2}=o\left(\lambda_{n}\right)$, we have

$$
\begin{equation*}
\operatorname{var} \frac{1}{\sqrt{\lambda_{n}}} \sum_{k=1}^{n} m^{n-k}\left(\varepsilon_{k}-\lambda_{k}\right)=\frac{1}{\lambda_{n}} \sum_{k=1}^{n} m^{2(n-k)} b_{k}^{2} \leq \frac{b_{n}^{2}}{\lambda_{n}} \cdot \frac{1-m^{2 n}}{1-m^{2}} \rightarrow 0 \tag{13}
\end{equation*}
$$

as $n \rightarrow \infty$. We consider

$$
\begin{equation*}
\sum_{k=1}^{n} m^{n-k} S_{k}=\sum_{k=1}^{n-r_{n}} m^{n-k} S_{k}+\sum_{k=n-r_{n}+1}^{n} m^{n-k} S_{k} \tag{14}
\end{equation*}
$$

Applying a known inequality $\left(\sum_{k=1}^{n} a_{k}\right)^{P} \leq n^{P-1} \sum_{k=1}^{n} a_{k}^{P}\left(a_{i} \geq 0, i=\overline{1, n}\right)$ we receive

$$
\begin{align*}
& \operatorname{var} \frac{1}{\sqrt{\lambda_{n}}} \sum_{k=1}^{n-r_{n}} m^{n-k} S_{k} \leq \frac{n}{\lambda_{n}} \sum_{k=1}^{n-r_{n}} m^{2(n-k)} \operatorname{var}_{k}=\frac{n}{\lambda_{n}} \sum_{k=1}^{n-r_{n}} m^{2(n-k)} \sigma^{2} E X_{k-1} \leq \tag{15}\\
\leq & \frac{n}{\lambda_{n}} \lambda_{n-r_{n}} \cdot \frac{\sigma^{2}}{1-m} \cdot m^{2 r_{n}} \frac{1}{1-m^{2}}=\frac{\sigma^{2}}{(1-m)\left(1-m^{2}\right)} \frac{\lambda_{n-r_{n}}}{\lambda_{n}} \cdot n m^{2 r_{n}} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{align*}
$$

where it is considered, that $n m^{2 r_{n}} \rightarrow 0$ as $n \rightarrow \infty$.

Let f is characteristic function of $\xi_{1,1}-m, F_{k}$ denote the σ-algebra generated by $\left\{X_{0}, X_{1}, \ldots, X_{k}\right\}$. Using independence of $\xi_{k, j}, k, j \in N$ we find that

$$
\begin{equation*}
E e^{i t \frac{1}{\sqrt{\lambda_{n}}} \sum_{k=n-r_{n}+1}^{n} m^{n-k} S_{n}}=E \prod_{k=n-r_{n}+1}^{n} f^{X_{k-1}}\left(\frac{m^{n-k} t}{\sqrt{\lambda_{n}}}\right) \tag{16}
\end{equation*}
$$

According to Taylor's formula for enough big n we have

$$
\begin{equation*}
f\left(\frac{m^{n-k} t}{\sqrt{\lambda_{n}}}\right)=1-\frac{\sigma^{2} m^{2(n-k)}}{\lambda_{n}} t^{2}+o\left(\frac{m^{2(n-k)}}{\lambda_{n}} t^{2}\right) \tag{17}
\end{equation*}
$$

Now, consistently applying known inequalities

$$
\begin{equation*}
\left|e^{x}-e^{y}\right| \leq|x-y|, \quad \operatorname{Re} x \leq 0, \operatorname{Re} y \leq 0 \tag{18}
\end{equation*}
$$

and $|\ln (1+x)-x| \leq x^{2}$ considering (17), (10), we receive

$$
\begin{gather*}
\left|E \prod_{k=n-r_{n}+1}^{n} f^{X_{k-1}}\left(\frac{m^{n-k} t}{\sqrt{\lambda_{n}}}\right)-E e^{-\sum_{k=n-r_{n}}^{n} x_{k-1} \frac{\sigma^{2} m^{2(n-k)} \lambda_{n}}{\lambda^{2}}}\right|= \\
\leq E \sum_{k=n-r_{n}+1}^{n} X_{k-1}\left|\ln f\left(\frac{m^{n-k} t}{\sqrt{\lambda_{n}}}\right)-\frac{\sigma^{2} m^{2(n-k)}}{\lambda_{n}} t^{2}\right| \leq \tag{19}\\
\leq \sum_{k=n-r_{n}+1}^{n} E X_{k-1} \cdot \frac{\sigma^{4} m^{4(n-k)}}{\lambda_{n}^{2}} t^{4} \leq \frac{\sigma^{4} t^{4}}{\lambda_{n}^{2}} \sum_{k=n-r_{n}+1}^{n} m^{n-k} E X_{k-1} \leq \frac{\sigma^{4} t^{4}}{\lambda_{n}} \cdot \frac{1}{(1-m)^{2}} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{gather*}
$$

Clearly, that for any $t \in R$

$$
\begin{gather*}
\left|\sum_{k=n-r_{n}+1}^{n} X_{k-1} \frac{\sigma^{2} m^{2(n-k)}}{\lambda_{n}} t^{2}-\frac{\sigma^{2}}{(1-m)\left(1-m^{2}\right)} t^{2}\right| \leq \\
\leq\left[\sup _{n-r_{n} \leq k \leq n}\left|\frac{X_{k-1}}{\lambda_{n}}-\frac{1}{1-m}\right| \sigma^{2} \sum_{k=n-r_{n}+1}^{n} m^{2(n-k)}+\sigma^{2} \frac{m^{r_{n}}}{(1-m)\left(1-m^{2}\right)}\right] t^{2} . \tag{20}
\end{gather*}
$$

From (10) we obtain that

$$
\begin{equation*}
\sup _{n-r_{n} \leq k \leq n}\left|\frac{X_{k-1}}{\lambda_{n}}-\frac{1}{1-m}\right| \xrightarrow{P} 0 \text { as } n \rightarrow \infty \tag{21}
\end{equation*}
$$

Then from (20), (21) and theorems Lebeguar about convergence we have

$$
E e^{-\sum X_{k-1} \frac{\sigma^{2} m^{2(n-k)}}{\lambda_{n}} t^{2}} \rightarrow e^{-\frac{\sigma^{2} t^{2}}{(1-m)\left(1-m^{2}\right)}} \text { as } n \rightarrow \infty
$$

Now this and from (19), (13) - (16), (12) completes the proof.

References

1. Aliev S.A. Limit the theorem for Galton - Watson branching processes with immigration //Ukr. Math. J. v. 37, 1985, pp. 656-659.
2. Kawazu K., Watanabe S. branching processes with immigration and related limit theotems.//Theory Prob. Appl. V.16, 1971, pp. 36-54.
3. Wei C.Z., Winnicki J. Some asymptotic results for the branching process with immigration.//Stoch. Process. Appl. V.31, 1989, pp. 261-282.
4. Rahimov I. Functional limit theorems for critical processes with immigration//Adv. Appl. Prob. 2007 V. 39, pp. 1054-1069.
