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     The models of financial markets with disorder we have investigated in [1]-[3]. Here we 
represent one special model with disorder as the evolution of stock price process and find 
optimal in mean square sense forecasting estimation. 
 
     Let’s consider a real valued stochastic process NnnSS ≤≤= 0)(  on a filtered probability space 

),,,( PFF nΩ  and adopted to the filtration NnnF ≤≤0)(  such that  
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)(ωθθ =  is a random variable which takes the values from the set },...,2,1{ N  with 
probabilities  

.,...,2,1),(),( NnnPnPq nn =≤=Π== θθ  

     We assume, that )1(ρ  and )2(ρ  are independent and they are jointly independent of θ , i.e. 
the vector ),( )2()1( ρρ  is independent of  θ .  
      From (1) it is clear, that  

.0, 01 >= − SeSS n
nn

ρ                            (2) 
     We propose  the process S  given by (1) or (2) as stock price evolution model.  
     As we see before random moment θ  there is complete (binomial) market and after disorder 
moment θ  - incomplete (multinomial) market. 
     The problem we investigate is forecasting of stock price process S  and estimation of 
disorder moment θ , i.e. we find ]/[)(ˆ S

mnnn FSEmS −= , nm <  and )/(ˆ S
nn FE θθ = , where 
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     Note, that from (2) for each r   
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     Lemma 1. The conditional expectation  
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     The proof of Lemma1 is based on Bayes formula and straightforward calculations. The 
problem of finding this conditional expectation belongs to the general filtered probability-
experiment framework, given in [4] and it is not difficult to obtain (3) from the results presented 
there. 
 
     Theorem 1. The optimal in mean square sense m -step forecasting estimation of 

rnFSS nn ,...,1,0),,( ==  described by (1) is  
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where the conditional expectations are defined from Lemma 1 formula (3). 
 
     Using Lemma 1 we obtain also optimal in mean square sense estimation of disorder moment 
θ  
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