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The models of financial markets with disorder we have investigated in [1]-[3]. Here we
represent one special model with disorder as the evolution of stock price process and find
optimal in mean sguare sense forecasting estimation.

Let's consider areal valued stochastic process S = (S,) .., ON afiltered probability space
(©,F,F,,P) and adopted to thefiltration (F, ).y Such that
S, =Se™, S, >0, D
where § isdeterministicand H, = p, + p, +...+ p,, with
2, =pP1(N<O)+pP1(n>06), n=12,...,N.
I (A) istheindicator of anevent Ae F;
p(i) = (pr(1i))]5n§N i=12,
are adopted to the filtration F sequances of independent identically distributed random
variables; p® takesthevalues a, and a, with probabilities
P’ =P(p” =a), p;’ =P(p;” =a,) =1-p;” and p® tekesthevalues a,8,,...,8,
with probabilities
p? =P(p!? =a,), k=12,..,1.
0 = 0(w) isarandom variable which takes the values from the set {1,2,..., N} with
probabilities
g,=P@=n), I1,=P(@<n),n=212,...,N.
We assume, that o and p‘? areindependent and they are jointly independent of &, i.e.
the vector (0@, p®) isindependent of 4.
From (1) it isclear, that
S,=S..e", S >0. 2
We propose the process S given by (1) or (2) as stock price evolution model.
As we see before random moment & there is complete (binomial) market and after disorder

moment & - incomplete (multinomial) market.
The problem we investigate is forecasting of stock price process S and estimation of

disorder moment @, i.e. wefind S, (m) = E[S,/FS ], m<n and 6, = E(6/F°), where

F°=0{S,,S,,S,}-

Note, that from (2) for each r
FS=F’=0{p..p,}.

Lemma 1. The conditional expectation
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%, if r<n,
P@=n/F®)=P(@=n/F’)= ' 3
i SUR T

;
where

_R()R(p,)Rlp) | _
P, ()P (p,) - P(py) e

U =U, (P P1)

R0 =P =x),i =12, xe{ay, 8. a};

r r
L = quuk—l +@-11)u,, II, = zqk -
k=1 k=1
The proof of Lemmal is based on Bayes formula and straightforward calculations. The
problem of finding this conditional expectation belongs to the general filtered probability-
experiment framework, given in [4] and it is not difficult to obtain (3) from the results presented
there.

Theorem 1. The optimal in mean square sense M -step forecasting estimation of
S=(S,,F,),n=01...,r described by (1) is

S.(m)=S, [P@<n/F’ )Ee" )"+
z P(@=n—-m+ k/an,m)(Eepf” )k—l(Eepl(Z) )m_k+1 +P@>n/ an,m)(Eepl(l) )m],
k=2

where the conditional expectations are defined from Lemma 1 formula (3).

Using Lemma 1 we obtain also optimal in mean sguare sense estimation of disorder moment

0
) u, EO -k (U, ~u,,)
0 =E@IF’)= = ,
Lr
N
where E6 =) kg, .
k=1
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