ON GROWTH RATE OF SOLUTION OF SECOND ORDER NONLINEAR ELLIPTIC EQUATION IN UNBOUNDED DOMAIN

Elshad Agayev, Sahib Aliyev

Institute of Mathematics and Mechanics of ANAS, Baku, Azerbaijan soltanaliyev@yahoo.com

Abstract. This paper deals with quality behavior of the positive Solution U(x) of a non-linear elliptic equation in unbounded domain vanishing zero on the boundary when |x| is sufficiently large depending on the non-linearity character and the geometry of the domain the growth rate of the solution depending on the constant of the elliptic equation and the parameters of the domain is established.

Keywords: mathematical physics, equations of elliptic type quality equations, non-divergeaut equation with measurable coefficients.

In the paper, we consider the solution u(x) of the equation of the form... (1), where (2) in an unbounded domain $\Omega = R^n / \cup \varphi$ obtained from R^n , $n > \alpha$ by excluding the balls of the same definite radius ε with centers in the tame shear lattice.

Denote the boundary of domain Ω by $\partial \Omega = \bigcup_{i_{1},\dots,i_{n}} \partial B_{i_{1},\dots,i_{n}}^{\varepsilon}$. It is assumed that the

matrix $||a_{ij}(x)||$ is symmetric and uniformly positive-definite.

Let e - be an ellipticity on constant of the operator L, i.e.

$$e = \sup_{x \in \Omega, |\xi|=1} \frac{\sum_{i=1}^{n} a_{ii(x)}}{\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j}$$

Let the number S > 0 satisfy the inequality s > e - 2 and α satisfy the inequality $-1 < \alpha < \min\left(1, \frac{2}{s}\right)$

In the paper, we shall use the following simple maximum principle and the growth lemma Maxim [1, c.15 - 19].

Maximum principle. Let u(x) be a positive solution of equation (1), where φ $\max_{\overline{G}} u = \max_{\partial G} u$ satisfies condition (2) in the unbounded domain G, continuous in \overline{G} . Then $\max_{\overline{G}} u = \max_{\partial G} u$

The growth lemma. Denote by B_r ball in R^n of radius R centered at the origin of coordinates. Let the domain $D \subset B_R$, $R < R_0$, where R_0 is sufficiently small, have limit points on the surface S_R of the ball B_R and intersect the ball B_{P_1} , $\rho = \frac{1}{4}R$

Denote $H = B_p \setminus D$, Γ is a part of the boundary of domain D arranged strongly interior to B_R .

Let be u(x) a solution of equation (1), where $\varphi(x,u)$ satisfies condition (2), positive in G, continuous in \overline{G} and vanishes on Γ , and H let contain a ball centered at some point ξ_1 or

radius ρ_1 Then $\sup_{x \in G} u(x) \ge (1 + \xi \cdot \frac{\rho_1^s}{R^s}) \cdot \sup_{x \in G \cap B_\rho} u(x)$, where ξ is a positive constant dependent

on S.

Theorem. Let u(x) be a positive solution of equation (1) in Ω , where φ satisfies condition (2). Let $\partial \Omega$ be a boundary of domain Ω and $u(x)|_{\partial\Omega} = 0$; $M(r) = \max_{|x|=r} u(x)$ Then there exist $\beta(s) = const$ such that $M(r) > e^{\beta} \cdot const$, where the constant β depends both on s and on e, n. (may be $M(r) = \infty$, with some r). *Proof.* Consider the balls B_R^0 and $B_{4R}^0 c$ centered at the origin of coordinates and of radius

R = 1/4 и 4R, respectively. Since $\varepsilon < 1/4$, the set $(R^n \setminus \overline{\Omega}) \cap B_R^0$ R_n contains least one ball of radius ε

Applying the growth lemma for the balls B_R^0 and B_{4R}^0 we get $\sup_{\Omega \cap B_{4R}^0} u(x) \ge \left[1 + \xi \cdot \frac{\varepsilon^s}{(1/4)^s}\right] \cdot \sup_{\Omega \cap B_R^0} uu(x) > \left[1 + \xi(4\varepsilon)^s\right] \cdot u(0)$ Let the maximum of the function u(x) in the closure of domain $\Omega \cap B_{4R}^0$ be attained at some point x_1 on the surface of this ball. Applying the growth lemma once more, we get $\sup_{\Omega \cap B_{4k}^{i_1}} u(x) > \left[1 + \xi \cdot (4\varepsilon)^s\right]^2 \cdot u(0)$

Denote r = |x|. Assume $r = 4^k \cdot R$ and apply the growth lemma k times in the indicated formulation. Then we get $\sup_{\Omega \cap B_{4^k,R}^{x_i}} u(x) > \left[1 + \xi \cdot (4\varepsilon)^s\right]^k \cdot u(0)$

It follows from the last formula $M(r) > e^{\left[\log_4 \frac{r}{R}\right] \cdot \ln(1+\xi(4\xi)^s)} \cdot u(0)$

It follows that of $\beta > 0$ is a sufficiently small constant dependent on s, then $M(r) > e^{\beta} \cdot u(0)$

Consequently, $M(r) > e^{\beta} \cdot const$.

Remark. Everywhere we considered a positive solution. The case of a negative solution is reduced to the case of a positive solution by changing it's by a contrary one.

References

- 1. Agayev E. V. On behavior of solution of second order elliptic equation in unbounded domain. // Zhurnal Vestnik MGU, 1991. Mathematic, Mechanic, #4, pp. 16-19.
- 2. Landis E. M. Second order elliptic and parabolic type equations. M., Nauka, 1971, 287 p.