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0. In the theory of stochastic Ito’s integral 
0

( , )
T

tf t dwω∫ , besides the fact that the integr-

and ( , )f t ω  is the measurable function of two variables, it should be the adapted (nonanticipat-
ed) process. Starting from the 70th of the past century, many attempts were made to weak the re-
quirement for the integrand to be adapted for the integrand of the Ito’s stochastic integral as well 
as in the theory of “the extension of filtration”. Skorokhod (1975) suggested absolutely different 
method, it generalized the direct and inverse Ito’s integrals and did not require for the integrand 
to be independent of the future Wiener process. Towards this end, he required for the integrand 
to be smooth in a certain sense, i.e., its stochastic differentiability. This idea was later on 
developed in the works of Gaveau-Trauber (1982), Nualart, Zakai (1986), Pardoux (1982), 
Protter, Malliavin (1979), etc. In particular, Gaveau-Trauber have proved that the Skorokhod 
operator of stochastic integration coincides with the conjugate operator of a stochastic derivative 
operator. 

 For the class of normal martingales (a martingale M  is called normal if , tM M t〈 〉 = ) 
which have the chaos representation property Ma, Protter and Martin (1998) have proposed an 
anticipating integral and the stochastic derivative operator and the integral representation 
formula of Ocone-Haussmann-Clark is established (which, in turn play an important role in the 
modern financial mathematics). This integral is analogous to the Skorohod integral as developed 
by Nualart and Pardoux (1988). According to the Ocone-Haussmann-Clark formula if 

MDF 1,2∈ , then 

0

( ) ( )
T

p M
t tF E F D F dM= + ∫  

is valid; here MD 1,2  denotes the space of quadratically integrable functionals having the first 

order stochastic derivative, and )( FD M
t

p  is the predictable projection of the stochastic 

derivative FDM
t  of the functional F . There are many similarities between the above-

mentioned martingale anticipating integral and the Skorohod integral, but there are also some 
important differences. Many of these differences stem from one key fact: in the Wiener case 
[ , ] ,t tw w w w t= 〈 〉 = , while in the normal martingale case only , tM M t〈 〉 = , and [ , ]tM M  is 
random. For example, there are two ways to describe the variational derivative and they are 
equivalent in the Wiener case but not in the martingale case. In [3] an example is given, which 
shows that the two definitions (Sobolev space and chaos expansion) are compatible if and only 
if [ , ]tM M  is deterministic. Therefore in the martingale case the space M

pD 1,  ( 21 << p ) 
cannot be defined in the usual way, i.e., by closing the class of smooth functionals with respect 
to the corresponding norm. In work of Purtukhia (2003) the space M

pD 1,  ( 21 << p ) is proposed 
for a class of normal martingales and the integral representation formula of Ocone-Haussmann-
Clark is established for functionals from this space.   
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 1. Let  , [0,1]tw t∈  be a d -dimensional standard Wiener process defined on the canon-
ical probability space ( , , )PΩ ℑ , }0,{ tswst ≤≤=ℑ σ . A smooth functional will be a 

random variable 1:F RΩ→  of the form 
1 2

( , ,..., )
nt t tF f w w w= , where the function f  

belongs to ( )dn
bC R∞  and 1 2, ,..., [0,1]nt t t ∈ . The derivative of F  can be defined as (see [2]): 

1 2 [0, ]
1

( ) ( , ,..., ) ( )
n i

n
w j
t t t t tji

i

fD F w w w I t
x=

∂
=

∂∑ , [0,1]t∈ , 1,...,j d= . 

Let F  be a square integrable random variable having an orthogonal Wiener-Chaos 

expansion of the form 
0

( )n n
n

F I f
∞

=

= ∑ . Then F  belongs to the space 2,1
wD  (see [2]) if and only 

if 
2

2
([0,1] )

1

!|| || nn L
n

nn f
∞

=

< ∞∑  and in this case we have 1
1

( ( , )), [0,1]w
t n n

n

D F nI f t t
∞

−
=

= ⋅ ∈∑  and  

2 2 2

2
([0,1]) ( ) ([0,1] )

1
|||| || || !|| || n

w
L L n L

n
D F nn f

∞

⋅ Ω
=

= ∑ . 

2. Let nΣ be an increasing simplex of nR+ : 1 1{( ,..., ) : 0 }n
n n nt t R t t+Σ = ∈ < < ⋅⋅⋅ < , and 

extend  a function f  defined on nΣ  by making f  symmetric on nR+ . One can then define the 
multiple integral with respect to M  as 

11( ) : ! ( ,..., )
n

n

n n t tI f n f t t dM dM
Σ

= ⋅⋅⋅∫ . 

Definition 2.1 (cf. Definition 3.2 [3]). Let { ; 0}tM tσℜ = ≥  be the σ -algebra genera-
ted by a normal martingale M . Let nH  be the n -th homogeneous chaos, ( )n nH I f= , where 

f  ranges over all 2 ( )nL Σ . If 2 0
( , ) nn

L P H
∞

=
ℜ = ⊕ , then we say M  possesses the chaos represe-

ntation property (CRP). 
Let 0( , ,{ } , )t t P≥Ω ℑ ℑ  be a filtered probability space satisfying the usual conditions. We 

assume that a normal martingale M  with the CRP is given on it and that ℑ  is generated by  
M . Thus, for any random variable 2 ( , )F L P∈ ℜ  we have by the CRP that there exists a sequ-

ence of functions 2 ([0,1] )n
n sf L∈  (={ 2 ([0,1] )nh L∈ : h  is symmetric in all variables), 

1, 2,...n = , such that 
0

( )n n
n

F I f
∞

=

= ∑ . Consider the following subset  2,1 2 ( , )MD L P⊂ ℜ : 

2

2
2,1 ([0,1] )

0 1
{ ( ) : !|| || }n

M
n n L

n n
D F I f nn f

∞ ∞

= =

= = < ∞∑ ∑ . 

Definition 2.2 (see [3]).  The derivative operator is defined as a linear operator MD⋅  

from MD 1,2  into 2 ([0, ] )L T ×Ω  by the relation:   

1
1

: ( ( , )), [0,1]M
t n n

n

D F nI f t t
∞

−
=

= ⋅ ∈∑ , 

whenever F  has the chaos expansion 
0

( )n n
n

F I f
∞

=

= ∑ . 

3. Our aim is to introduce a new definition of the stochastic derivative operator for the 
two-dimensional compensated Poisson functionals, which is not based on the chaos expansion 
of functionals, as well as in Ma, Protter and Martin’s work and to show the equivalence of this 
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two definitions.  Let  [0. ]( , ,{ } , )t t T P∈Ω ℑ ℑ  be a filtered probability space satisfying the usual 

conditions. Let tN  be the standard Poisson process ( ( ) / !k t
tN k t e k−Ρ = = , 0,1, 2,...k = ) and  

tℑ  is generated by N  ( N
t tℑ = ℑ ), Tℑ = ℑ . Let tM  be the compensated Poisson process 

( t tM N t= − ). Let us denote ( ) : ( 1) ( )x f x f x f x∇ = + − ; ( ) : ( )
Tx T x x Mf M f x =∇ = ∇ . For 

any function of two variables ( , )g ⋅ ⋅  introduce the designation: 
2 ( , ) ( 1, 1) ( , )g x y g x y g x y∇ = + + − . 

 It is not difficult to see that  [ ( , )] [ ( , )]x y y xg x y g x y∇ ∇ =∇ ∇   and  
2 ( , ) [ ( , )] ( , ) ( , )x y x yg x y g x y g x y g x y∇ = ∇ ∇ +∇ +∇ . 

Using the relations   

[0, ] 1 [0, ]
0

( ) ( ( ))
T

s s u sM I u dM I I= = ⋅∫  and [ , ]s s sM M N M s= = + , 

by the Definition 2.2 we can obtain: 1 [0, ] [0, ][ ( ( ))] ( )M M
t s t s sD M D I I I t= ⋅ =  and   

[0, ][ , ] ( )M M M M
t s t s t s t sD M M D N D M D s I t= = + = . 

Definition 3.1. [0, ]( ) : [ ( )] | : [ ( )] | ( )
s s

M Mn n n
t ts x x M s x x M sD M x D M x I t= == ∇ ⋅ = ∇ ⋅ ;  

            +∇=∇ )()(),(),( ],0[],0[ tItIMMPMMPD TSTSxyTS

M
t  

)(),()(),( ],0[],0[ tIMMPtIMMP TTSySTSx ∇+∇+ , 
for any polynomial function ),( yxP . 
 Proposition 3.1. If )( 22 fIF =  for some )],0([ 22

2 TLf s∈ , then F  have  the stochas-

tic derivative, FDtfIFD M
t

M
t =⋅= )),((2 21  and 

2
)],0([2

2
)],0([ 2

22
||||!22||||

TLTL
M
t fFD ⋅⋅=Ω× . 

Proof. Step 1:Suppose that  2f  is a symmetric function of the form 

),(),(),( 2121212 1221
ttaIttaIttf AAAA ×× += , where ],0[, 21 TAA ⊂ , ∅=∩ 21 AA .  The set of 

such symmetric function we denote by 2Ε . For such  2f  we have 

)()(2)()()()()( 21
0000

22 1221
AMAaMdMsIdMsIadMsIdMsIafI

T

sA

T

sA

T

sA

T

sA =+= ∫∫∫∫
 Therefore, due to the Definition 3.1, one can easily verify that: 

=++== )]()()()()()([2)]()([2)( 122122 2121
AMtIAMtItItIaAMAMDafID AAAA

M
t

M
t                               

)),((2)]()()()([2 2112 21
tfIAMtIAMtIa AA ⋅=+= .                         (3.1) 

 Moreover, it is not difficult to see that: 

=⋅⋅⋅=⋅= ∫∫ ΩΩ×

T

o
TL

T

o
LTL

M
t dttfIdttfIFD 2

]),0([21
22

)(21
2

)],0([ 222
||)),((||!12||)),((2||||||  

                             2
)],0([2

2
]),0([21 2

22
||||!22||)),((||!22 TL

T

o
TL fdttfI ⋅⋅=⋅⋅⋅= ∫ .                     (3.2) 
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 Step 2: If )( 22 fIF =  for some )],0([ 22
2 TLf s∈ , then F  can be approximated in the 

)(2 ΩL -norm by a sequence of multiple integrals )( 22
nfI  of elements 22 Ε∈nf  as ∞→n . 

By the relations (3.1) and (3.2) applied to nf 2  we deduce that the sequence of 
derivatives nM fD 2⋅  converge in )],0([2 Ω×TL , which completes the proof of the proposition.   
 Analogously one can prove the following 

Theorem 3.1. For two-dimensional Poisson polynomial functionals the above-given 

two definitions of stochastic derivatives (Definition 3. 2 from [3] and Definition 3.1) are 

equivalent:  

),(),( TS
M
tTS

M
t MMPDMMPD = . 

 Proposition 3.2. ++−++= )()]1,()1,1([),( ],0[ tIMMPMMPMMPD STSTSTSt  

TtTSyStTSxTTSTS MDMMPMDMMPtIMMPMMP ),()1,()()],()1,([ ],0[ ∇++∇=−++ .  

Proposition 3.3. For any polynomial functions ),( yxF  and ),( yxG  we have 
+= ),(),()],(),([ TStTSTSTSt MMFDMMGMMGMMFD  
),(),(),(),( TStTStTStTS MMGDMMFDMMGDMMF ++ . 

 Proof. Due to the definition 3.1 on the one hand we have 
−++++= )1,1()1,1([)],(),([ TSTSTSTSt MMGMMFMMGMMFD  

−+++++− )1,()1,([)()]1,()1,( ],0[ TSTSSTSTS MMGMMFtIMMGMMF  

21],0[ :)()],(),( IItIMMGMMF TTSTS +=− . 
 On other hand, one can conclude that 

++ ),(),(),(),( TStTSTStTS MMGDMMFMMFDMMG  

21),(),( IIMMGDMMFD TStTSt +=+ . 
Theorem 3.2. Let  tu  is Skorokhod integrable and ),( yxF is a polynomial function. 

Then tTS uMMF ),(  is Skorokhod integrable and we have 

−= ∫∫
],0[],0[

),(),(
T

ttTS
T

ttTS dMuMMFdMuMMF  

∫∫ −−
],0[],0[

)],([)],([
T

TStt
T

tTStt dtMMFDudMMMFDu   ( ..saP − ). 
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