ON SOME PROPERTIES STRONGLY AND WEAKLY SEPARABLE GAUSSIAN HOMOGENEOUS ISOTROPIC STATISTICAL STRUCTURES IN BANACH SPACE OF MEASURES

Lela Aleksidze¹, Zurabi Zerakidze²

Gori University, Gori, Georgia ¹lela_allk@bk.ru, ²Z.Zerakidze@mail.ru

On the interesting problems in the description of statistical structures. (See 1-3) Here we recall some definitions.

Definition 1. A statistical structures $\{E, S, \mu_i, i \in A\}$ is said to be weakly separable, it there exists a family $(X_i)_{i \in A}$ of measurable parts of E, such that the relations $(\forall i)(\forall j)(i \notin A \& j \in A \Rightarrow P_i(X_j)) = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$ are fulfilled.

Definition 2. A statistical structure $\{E, S, \mu_i, i \in A\}$ is strongly separable, if there exists a disjunct family $(X_i)_{i \in A}$ of measurable parts of E, such that the relation $(\forall i)(i \in A \Rightarrow \mu_i(X_i) = 1)$ is fulfilled.

Let M^{σ} be linear real space of all finite measures with alternating signs on S. **Definition 3.** A linear subset of measures $M_{\beta} \subset M^{\sigma}$ is said to be a Banach space of measures

1. one can introduce a norm $\|\mu\|$ on M_{β} is the Banach space, and for every mutually singular measures μ and ν , $\mu, \nu \in M_{\beta}$ and, for every real numbers $\lambda \neq 0$, we have $\|\mu + \lambda \nu\| \ge \|\mu\|$;

2. if
$$\mu \in M_{\beta}$$
 and $|f| \le 1$, then $\nu_f(A) = \int_A f(x)\nu(dx) \in M_{\beta}$, where $f(x)$ is an S-
measurable real function and $\|\psi\| \le \|\psi\|$

measurable real function and $\|\boldsymbol{v}_f\| \leq \|\boldsymbol{v}\|$.

In the sequel, it will be assumed that μ_i are orthogonal for all different *i* measures, i.e. the statistical structure $\{E, S, \mu_i, i \in A\}$ is the orthogonal Gaussian statistical structures. We prove the following theorems

Theorem 1. Let $M_{\beta} = \bigoplus_{i \in A} M_{\beta}(\mu_i)$ be Banach space of measures. For the Gaussian homogeneous isotropic orthogonal statistical structure $\{E, S, \mu_i, i \in A\}$ to be weakly separable, it is necessary and sufficient that the correspondence $f \to \ell_f$ given by the equality $\int f(x)v(dx) = \ell_f(v), \ \forall v \in M_{\beta}$ be one-to-one, where $\ell_f(v)$ is a linear functional on M_{β} , $f \in F$ where F is the set of those f, for which $\int f(x)v(dx) = \forall v \in M_{\beta}$.

Theorem 2. Let $M_{\beta} = \bigoplus_{i \in A} M_{\beta}(\mu_i)$. Let E be a complete separable metric space, let S be the Borel σ -algebra, and $cardA \leq 2^{\chi_0}$. Then, in the theory (ZFC) and (MA) for the Gaussian homogeneous isotropic orthogonal statistical structure $\{E, S, \mu_i, i \in A\}$ to be strongly separable, it is necessary and sufficient that the correspondence $f \to \ell_f$ given by the equality

 $\int f(x)\nu(dx) = \ell_f(\nu), \ \forall \nu \in M_\beta \text{ be one-to-one, where } \ell_f(\nu) \text{ is a linear functional on } M_\beta,$ $f \in F$, where F is the set of those f, which $\int f(x)\nu(dx) = \ell_f(\nu)$ is defined $\forall \nu \in M_\beta$.

References

- 1. I.Sh. Ibramkhalilov, A.V. Skorochod. Consistent estimates of parameters on random processes, Kiev, 1980.
- 2. A.B. Kharazishvili. Topological aspects of measures theory. Kiev 1984.
- 3. Z.S. Zerakidze. Banach space of measures. Prob. Theory and math. Germany, Stat, V.S.P. (Moscow 1991).