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 Consider the following evolution scheme of some population of particles. Let random 
variables 0{ , }nZ n∈N  ( 0 {0} { 1,2,...}= =N NU ) is given recursively by 
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n nk
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Z Z ξ+
=
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Here the independent and identically distributed random variables nkξ  is interpreted as the 
number of offspring of the k th individual in the n th generation. All offspring variables nkξ  
have a common distribution for all ,n k∈N . Then nZ  be viewed as the population size at time 
n  in Galton-Watson Branching Process (GWP). The value : nkA ξ= E  denotes the mean number 
of offspring of a single individual. Further we consider the case of  1A = , at which the GWP 

0{ , }nZ n∈N , according to classification of branching processes, is called critical.  
 Let 1 01: { }kp Z kξ= ≡ =P  be are reproduction law of offspring of the single individual, 
for which we everywhere demand a conditions 0 0p >  and 0 1 1p p+ ≠ . Put into consideration 

the probability generating function (g.f.) 
0

( ) : k
kk

F x p x
∈

=∑ N
. According to a branching 

condition, the g.f. ( ) : nZ
nF x x= E  of the variable nZ  is defined by n  step iteration of ( )F x , 

that is  for any ,n m∈N  the relations 0( ) ( ( )), ( )n m n mF x F F x F x x+ = =  hold; see, e.g. [1, p.2]. 
Let's assume further, that the second moment : (1)B F ′′=  is finite.  
 It is known, that asymptotical behavior of function ( ) 1 ( )n nR x F x= −  play a special 
role in researches of the trajectories of critical GWP. The following statement holds. 
 Lemma A [1, p.19]. If 1A = , then for all  0 1x≤ <   following asymptotical 
representation is fair:  

( )1( ) 1 (1) ,
(1 ) 1

2

n
xR x o nBn x

−
= + →∞

− +
.                                     (1) 

 Due to its importance, last lemma is called the basic lemma of the theory of critical 
GWP.  
 At 0x =  the value (0) { 0}n nR Z= >P  represents the survival probability of GWP 

0{ , }nZ n∈N . This probability tends to zero by the order ( )1O n  at infinite growth of number 
of generations n , i.e. the critical GWP asymptotically generates. Therefore in this case the 
properties of trajectories of GWP are traditionally studied on non-zero trajectories. Thus the 
important role is played by g.f.  

{ } ( )( ) : 0 1
(0)

j n
n n n
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R xg x Z j Z x
R∈

= = > = −∑
N

P .                                      (2) 

 An important value represents and an asymptotical representation of function ( )nR x′  as 
n →∞ . We have found out this representation the neighborhood of point 1x = . The latter 



 

 

The Third International Conference “Problems of Cybernetics and Informatics” 
September 6-8, 2010, Baku, Azerbaijan. Section #4 “Applied Stochastic Analysis” 

www.pci2010.science.az/4/12.pdf 
 

183

remark associates on the one hand with difficulty of receipt of representation for 0 1x≤ < , on 
the other hand it sufficient for our further discussing. So, the following locally-differential 
analog of the basic lemma of the theory of critical GWP is fair. 
 Lemma 1.  If 1A = , then as 1→x   following asymptotical representation is fair:  

2( ) ~ ( ) ,n nR x g x n′ − →∞ ,                                                   (3) 
where  the g.f. ( )ng x  is defined by (2).  
 Proof.  As the second moment : (1)B F ′′=  is finite, the Taylor expansion gives the 
chance to write to us that  

( )2 2( ) ( 1) 1 ( 1) , 1
2
BF x x x o x x= + − + − → .                                  (4) 

Whence by iteration of ( )nF x  it follows  

( )2( ( )) ( ) ( ) 1 (1) ,
2n n n
BF F x F x R x o n− = + →∞ .                                               (5) 

Using the Lagrange theorem in the left part of (5) we have  

( ) ( )2( ) ( ) 1 (1) ,
2( ( ) )n n

BF c x R x o n
F x x

′ = + →∞
−

,                              (6) 

where ( ) ( ( ) ) , 0 1c x x F x x θ θ= + − < < . In turn, owing to the relation (4) we will be 
convinced that ( ) ~ , 1c x x x → . Considering last fact together with formulas (4), (6), and 
taking into account a continuity of derivative of g.f. we will receive as 1x →   

( )
2

1~ ( ) ,
1n nF x R x n

x
⎡ ⎤

′ →∞⎢ ⎥−⎣ ⎦
.                                                   (7)  

Combining (1), (2) and (7), we complete the proof. 
 The continuous time analogue of the last lemma has been proved in work of the author 
[2]. There some are resulted application of this lemma for the Markov Branching Processes.  
 Remark. As the simple appendix of the lemma 1 we may to result its application in the 
proof of classical Yaglom’s theorem, which confirms, that the random variable 2 nZ Bn  
converges in weakly to a random variable distributed by the exponential law; see. [1, с.20]. 
Really, the Laplace transform (LT) 2( ) : 0nZ Bn

n ne Zθϕ θ −⎡ ⎤= >⎣ ⎦E  we write down in the form of 

( ) ( )n n ngϕ θ θ=  and, after differentiating it, taking into account (2) and (3), we receive 
2 2( ) ~ ( ) ( ) ,n n n ng nϕ θ θ ϕ θ′ − = − →∞ ,                                            (8) 

where : exp{ 2 }, 0n Bnθ θ θ= − > . As the LT of exponential law is the solution of differential 
equation 

2( ) ( ) 0ϕ θ ϕ θ′ + = , 
with the initial condition (0) 1ϕ = , then according to ideas of work [2], the equation (8) 
confirms that 

1( ) ,
1n nϕ θ

θ
→ →∞

+
. 

The last convergence is equivalent to the statement of Yaglom’s theorem. 
 In the present paper we are discussing some applications of the lemma 1 in researches 
of asymptotic properties of Q-processes. 
 The Q-process is the homogeneous Markov chain { }0,nW n∈N  with initial state 

0 1W = , which is defined by transition probabilities 



 

 

The Third International Conference “Problems of Cybernetics and Informatics” 
September 6-8, 2010, Baku, Azerbaijan. Section #4 “Applied Stochastic Analysis” 

www.pci2010.science.az/4/12.pdf 
 

184

{ } { }( ) : lim , 0n
ij n k k n k k n k mm

Q W j W i Z j Z i Z+ + + +→∞
= = = = = = >P P  

for , , ,n i j k∈N . After calculation we will be convinced that 

{ }( )n
ij n k kn

jQ Z j Z i
iA += = =P ;                                                      (9) 

on details see [1, pp. 56-58]. Further we need the g.f.   

0

( ) ( )( ) :i n j
n ij

j
W x Q x

∈

= ∑
N

. 

From equality (9) and taking into account the iteration for g.f. ( )nF x , we will receive that  

[ ] 1( ) ( ) ( ) ( )ii
n n nW x F x W x−= , 

where g.f. (1)
0( ) : ( ) 1nW

n nW x W x x W⎡ ⎤= = =⎣ ⎦E  is form of  

( ) ( ),n nW x xR x n′= − ∈N ,                                                         (10) 
 Further discussion gives to us that the following limit exists:   

2 ( ) 2lim ( ) lim ( ) : ( )i
n nn n

n W x n W x xμ
→∞ →∞

= = ,                                                  (11) 

and limit g.f. ( ) k
kk

x xμ μ
∈

=∑ N
 satisfies the functional equation  

1( ) ( ( )) ( ) ( )W x F x F x xμ μ= . 

Besides the non-negative numbers { },n nμ ∈N  form a stationary measure for Q-processes. 

Moreover jj
μ

∈
= ∞∑ N

, and  

( )2 ( ) 1 (1) ,n
ij jn Q o nμ= + →∞ .                                        (12) 

 Theorem 1.  Let 1=A  and the stationary measure { },n nμ ∈N  of Q-process   is 
given by (12). Then  

[ ]1 22 2

1 2lim . . . nn n B
μ μ μ

→∞
+ + + = .                                                (13) 

 Proof.  By using (1) and (2), the formula (3) we transform to a kind of  

( ) 2 2 2

4 1~ ,
(1 )nR x n

B n x
′ − →∞

−
, 

as 1x → . Considering equalities (10) and (11), from last relation we will receive that  

( ) 2 2

4 1~ , 1
(1 )

x x
B x

μ →
−

.                                                  (14) 

Now we are in conditions of well-known Hardy-Littlewood Tauberian theorem, according to 
which each of relations (13) and (14) attract another.  
 The theorem is proved.  
 The statement of the lemma 1 much more simplifies the proof of the following theorem, 
observed by T.Harris in 1951. 
 Theorem 2 [1, p.59].  Let 1=A .  Then for any 0x >  

2 2lim 1 2x xn

n
n

W x e xe
W

− −

→∞

⎧ ⎫
≤ = − +⎨ ⎬

⎩ ⎭
P

E
. 

 Proof. Consider LT ( ) : n nW W
n e θψ θ −⎡ ⎤= ⎣ ⎦

EE  of the variable n nW WE  and in view of 

equality (10), we will write down it in a form of  

( )( ) n nW W
n ne R eθ θψ θ − −= − E E . 

By means of (10) we can calculate, that  
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(1) 1n nW W Bn′= = +E . 
Considering last expression and owing to relations (3) and (8) we will have  

2( ) ~ ,
2n n nθψ θ ϕ ⎛ ⎞ →∞⎜ ⎟

⎝ ⎠
. 

We have noticed in remark, that ( ) 1 [1 ]nϕ θ θ→ +  as  n →∞ . Hence, we conclude, that 

2
1( ) ,

1
2

n nψ θ
θ

→ →∞
⎡ ⎤+⎢ ⎥⎣ ⎦

. 

Received LT corresponds to the Erlang’s density 24 , 0xxe x− ≥  of the first order, received by 
compositions of two exponential laws with identical parameter 2λ = . It is equivalent to 
statement of the theorem. 
 We notice that the theorem 2 in the monograph [1] has been proved by means of a 
consequence of Helly’s theorem.  
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