LOCALLY-DIFFERENTIAL ANALOGUE OF THE BASIC LEMMA OF THE GALTON-WATSON PROCESSES AND THE Q-PROCESSES

Azam Imomov

Institute of Mathematics and Information Technologies of Academy of Sciences
of the Republic of Uzbekistan, Tashkent imomov_azam@mail.ru

Consider the following evolution scheme of some population of particles. Let random variables $\left\{Z_{n}, n \in \mathbf{N}_{0}\right\}\left(\mathbf{N}_{0}=\{0\} \bigcup\{\mathbf{N}=1,2, \ldots\}\right)$ is given recursively by

$$
Z_{0}=1, \quad Z_{n+1}=\sum_{k=1}^{Z_{n}} \xi_{n k}
$$

Here the independent and identically distributed random variables $\xi_{n k}$ is interpreted as the number of offspring of the k th individual in the nth generation. All offspring variables $\xi_{n k}$ have a common distribution for all $n, k \in \mathbf{N}$. Then Z_{n} be viewed as the population size at time n in Galton-Watson Branching Process (GWP). The value $A:=\mathbf{E} \xi_{n k}$ denotes the mean number of offspring of a single individual. Further we consider the case of $A=1$, at which the GWP $\left\{Z_{n}, n \in \mathbf{N}_{0}\right\}$, according to classification of branching processes, is called critical.

Let $p_{k}:=\mathbf{P}\left\{Z_{1} \equiv \xi_{01}=k\right\}$ be are reproduction law of offspring of the single individual, for which we everywhere demand a conditions $p_{0}>0$ and $p_{0}+p_{1} \neq 1$. Put into consideration the probability generating function (g.f.) $F(x):=\sum_{k \in \mathbf{N}_{0}} p_{k} x^{k}$. According to a branching condition, the g.f. $F_{n}(x):=\mathbf{E} x^{Z_{n}}$ of the variable Z_{n} is defined by n step iteration of $F(x)$, that is for any $n, m \in \mathbf{N}$ the relations $F_{n+m}(x)=F_{n}\left(F_{m}(x)\right), F_{0}(x)=x$ hold; see, e.g. [1, p.2]. Let's assume further, that the second moment $B:=F^{\prime \prime}(1)$ is finite.

It is known, that asymptotical behavior of function $R_{n}(x)=1-F_{n}(x)$ play a special role in researches of the trajectories of critical GWP. The following statement holds.

Lemma A [1, p.19]. If $A=1$, then for all $0 \leq x<1$ following asymptotical representation is fair:

$$
\begin{equation*}
R_{n}(x)=\frac{1-x}{\frac{B n}{2}(1-x)+1}(1+o(1)), n \rightarrow \infty \tag{1}
\end{equation*}
$$

Due to its importance, last lemma is called the basic lemma of the theory of critical GWP.

At $x=0$ the value $R_{n}(0)=\mathbf{P}\left\{Z_{n}>0\right\}$ represents the survival probability of GWP $\left\{Z_{n}, n \in \mathbf{N}_{0}\right\}$. This probability tends to zero by the order $O(1 / n)$ at infinite growth of number of generations n, i.e. the critical GWP asymptotically generates. Therefore in this case the properties of trajectories of GWP are traditionally studied on non-zero trajectories. Thus the important role is played by g.f.

$$
\begin{equation*}
g_{n}(x):=\sum_{j \in \mathbf{N}} \mathbf{P}\left\{Z_{n}=j \mid Z_{n}>0\right\} x^{j}=1-\frac{R_{n}(x)}{R_{n}(0)} \tag{2}
\end{equation*}
$$

An important value represents and an asymptotical representation of function $R_{n}^{\prime}(x)$ as $n \rightarrow \infty$. We have found out this representation the neighborhood of point $x=1$. The latter
remark associates on the one hand with difficulty of receipt of representation for $0 \leq x<1$, on the other hand it sufficient for our further discussing. So, the following locally-differential analog of the basic lemma of the theory of critical GWP is fair.

Lemma 1. If $A=1$, then as $x \rightarrow 1$ following asymptotical representation is fair:

$$
\begin{equation*}
R_{n}^{\prime}(x) \sim-g_{n}^{2}(x), n \rightarrow \infty \tag{3}
\end{equation*}
$$

where the g.f. $g_{n}(x)$ is defined by (2).
Proof. As the second moment $B:=F^{\prime \prime}(1)$ is finite, the Taylor expansion gives the chance to write to us that

$$
\begin{equation*}
F(x)=x+\frac{B}{2}(x-1)^{2}\left(1+o(x-1)^{2}\right), x \rightarrow 1 \tag{4}
\end{equation*}
$$

Whence by iteration of $F_{n}(x)$ it follows

$$
\begin{equation*}
F_{n}(F(x))-F_{n}(x)=\frac{B}{2} R_{n}^{2}(x)(1+o(1)), \quad n \rightarrow \infty \tag{5}
\end{equation*}
$$

Using the Lagrange theorem in the left part of (5) we have

$$
\begin{equation*}
F_{n}^{\prime}(c(x))=\frac{B}{2(F(x)-x)} R_{n}^{2}(x)(1+o(1)), \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

where $c(x)=x+(F(x)-x) \theta, 0<\theta<1$. In turn, owing to the relation (4) we will be convinced that $c(x) \sim x, x \rightarrow 1$. Considering last fact together with formulas (4), (6), and taking into account a continuity of derivative of g.f. we will receive as $x \rightarrow 1$

$$
\begin{equation*}
F_{n}^{\prime}(x) \sim\left[\frac{1}{1-x} R_{n}(x)\right]^{2}, n \rightarrow \infty \tag{7}
\end{equation*}
$$

Combining (1), (2) and (7), we complete the proof.
The continuous time analogue of the last lemma has been proved in work of the author [2]. There some are resulted application of this lemma for the Markov Branching Processes.

Remark. As the simple appendix of the lemma 1 we may to result its application in the proof of classical Yaglom's theorem, which confirms, that the random variable $2 Z_{n} / B n$ converges in weakly to a random variable distributed by the exponential law; see. [1, c.20]. Really, the Laplace transform (LT) $\varphi_{n}(\theta):=\mathbf{E}\left[e^{-2 \theta Z_{n} / B n} \mid Z_{n}>0\right]$ we write down in the form of $\varphi_{n}(\theta)=g_{n}\left(\theta_{n}\right)$ and, after differentiating it, taking into account (2) and (3), we receive

$$
\begin{equation*}
\varphi_{n}^{\prime}(\theta) \sim-g_{n}^{2}\left(\theta_{n}\right)=-\varphi_{n}^{2}(\theta), \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

where $\theta_{n}:=\exp \{-2 \theta / B n\}, \theta>0$. As the LT of exponential law is the solution of differential equation

$$
\varphi^{\prime}(\theta)+\varphi^{2}(\theta)=0
$$

with the initial condition $\varphi(0)=1$, then according to ideas of work [2], the equation (8) confirms that

$$
\varphi_{n}(\theta) \rightarrow \frac{1}{1+\theta}, \quad n \rightarrow \infty
$$

The last convergence is equivalent to the statement of Yaglom's theorem.
In the present paper we are discussing some applications of the lemma 1 in researches of asymptotic properties of Q-processes.

The Q-process is the homogeneous Markov chain $\left\{W_{n}, n \in \mathbf{N}_{0}\right\}$ with initial state $W_{0}=1$, which is defined by transition probabilities

$$
Q_{i j}^{(n)}:=\mathbf{P}\left\{W_{n+k}=j \mid W_{k}=i\right\}=\lim _{m \rightarrow \infty} \mathbf{P}\left\{Z_{n+k}=j \mid Z_{k}=i, Z_{n+k+m}>0\right\}
$$

for $n, i, j, k \in \mathbf{N}$. After calculation we will be convinced that

$$
\begin{equation*}
Q_{i j}^{(n)}=\frac{j}{i A^{n}} \mathbf{P}\left\{Z_{n+k}=j \mid Z_{k}=i\right\} ; \tag{9}
\end{equation*}
$$

on details see [1, pp. 56-58]. Further we need the g.f.

$$
W_{n}^{(i)}(x):=\sum_{j \in \mathbf{N}_{0}} Q_{i j}^{(n)} x^{j}
$$

From equality (9) and taking into account the iteration for g.f. $F_{n}(x)$, we will receive that

$$
W_{n}^{(i)}(x)=\left[F_{n}(x)\right]^{i-1} W_{n}(x)
$$

where g.f. $W_{n}(x):=W_{n}^{(1)}(x)=\mathbf{E}\left[x^{W_{n}} \mid W_{0}=1\right]$ is form of

$$
\begin{equation*}
W_{n}(x)=-x R_{n}^{\prime}(x), n \in \mathbf{N} \tag{10}
\end{equation*}
$$

Further discussion gives to us that the following limit exists:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{2} W_{n}^{(i)}(x)=\lim _{n \rightarrow \infty} n^{2} W_{n}(x)=: \mu(x), \tag{11}
\end{equation*}
$$

and limit g.f. $\mu(x)=\sum_{k \in \mathbf{N}} \mu_{k} x^{k}$ satisfies the functional equation

$$
W_{1}(x) \mu(F(x))=F(x) \mu(x)
$$

Besides the non-negative numbers $\left\{\mu_{n}, n \in \mathbf{N}\right\}$ form a stationary measure for Q-processes. Moreover $\sum_{j \in \mathbf{N}} \mu_{j}=\infty$, and

$$
\begin{equation*}
n^{2} Q_{i j}^{(n)}=\mu_{j}(1+o(1)), n \rightarrow \infty . \tag{12}
\end{equation*}
$$

Theorem 1. Let $A=1$ and the stationary measure $\left\{\mu_{n}, n \in \mathbf{N}\right\}$ of Q-process is given by (12). Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left[\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right]=\frac{2}{B^{2}} . \tag{13}
\end{equation*}
$$

Proof. By using (1) and (2), the formula (3) we transform to a kind of

$$
R_{n}^{\prime}(x) \sim-\frac{4}{B^{2} n^{2}} \frac{1}{(1-x)^{2}}, n \rightarrow \infty
$$

as $x \rightarrow 1$. Considering equalities (10) and (11), from last relation we will receive that

$$
\begin{equation*}
\mu(x) \sim \frac{4}{B^{2}} \frac{1}{(1-x)^{2}}, x \rightarrow 1 \tag{14}
\end{equation*}
$$

Now we are in conditions of well-known Hardy-Littlewood Tauberian theorem, according to which each of relations (13) and (14) attract another.

The theorem is proved.
The statement of the lemma 1 much more simplifies the proof of the following theorem, observed by T.Harris in 1951.

Theorem 2 [1, p.59]. Let $A=1$. Then for any $x>0$

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{\frac{W_{n}}{\mathbf{E} W_{n}} \leq x\right\}=1-e^{-2 x}+2 x e^{-2 x} .
$$

Proof. Consider LT $\psi_{n}(\theta):=\mathbf{E}\left[e^{-\theta W_{n} / \mathbf{E} W_{n}}\right]$ of the variable $W_{n} / \mathbf{E} W_{n}$ and in view of equality (10), we will write down it in a form of

$$
\psi_{n}(\theta)=-e^{-\theta / \mathbf{E} W_{n}} R_{n}\left(e^{-\theta / \mathbf{E} W_{n}}\right)
$$

By means of (10) we can calculate, that

The Third International Conference "Problems of Cybernetics and Informatics"

$$
\mathbf{E} W_{n}=W_{n}^{\prime}(1)=B n+1 .
$$

Considering last expression and owing to relations (3) and (8) we will have

$$
\psi_{n}(\theta) \sim \varphi_{n}^{2}\left(\frac{\theta}{2}\right), n \rightarrow \infty
$$

We have noticed in remark, that $\varphi_{n}(\theta) \rightarrow 1 /[1+\theta]$ as $n \rightarrow \infty$. Hence, we conclude, that

$$
\psi_{n}(\theta) \rightarrow \frac{1}{\left[1+\frac{\theta}{2}\right]^{2}}, \quad n \rightarrow \infty
$$

Received LT corresponds to the Erlang's density $4 x e^{-2 x}, x \geq 0$ of the first order, received by compositions of two exponential laws with identical parameter $\lambda=2$. It is equivalent to statement of the theorem.

We notice that the theorem 2 in the monograph [1] has been proved by means of a consequence of Helly's theorem.

References

[1] K.B. Athreya, P.E. Ney, Branching processes, Springer, New York, 1972.
[2] A.A. Imomov, A Differential Analog of the Main Lemma of the Theory of Markov Branching Processes and Its Applications, Ukrainian Mathematical Journal, 7 (2005), 2, Springer, New York, pp. 307-315.

