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Consider the following evolution scheme of some population of particles. Let random
variables {Z,, ne N } (N, ={0}U{N=1,2,...}) is given recursively by

Zn
ZO :1’ Zn+1 = Zé:nk .
k=1

Here the independent and identically distributed random variables &

« 1s interpreted as the

number of offspring of the Kth individual in the Nth generation. All offspring variables &,
have a common distribution for all N,K € N. Then Z_ be viewed as the population size at time
N in Galton-Watson Branching Process (GWP). The value A:=E¢,, denotes the mean number

of offspring of a single individual. Further we consider the case of A=1, at which the GWP
{Z,, ne N}, according to classification of branching processes, is called critical.

Let p, =P{Z =&, =K} be are reproduction law of offspring of the single individual,
for which we everywhere demand a conditions P, >0 and p,+ [, #1. Put into consideration
the probability generating function (g.f) F(X):= ZKGN [oN x¥. According to a branching
condition, the g.f. F (X):= Ex“ of the variable Z, is defined by n step iteration of F(X),
(X) = F,(F, (X)), F,(X) = X hold; see, e.g. [1, p.2].

Let's assume further, that the second moment B:=F"(1) is finite.

that is for any Nn,me N the relations F

n+m

It is known, that asymptotical behavior of function R (X)=1-F (X) play a special

role in researches of the trajectories of critical GWP. The following statement holds.
Lemma A [1, p.19]. If A=1, then for all 0<x<1 following asymptotical
representation isfair:

R.(X) =Bnl;x(1+o(1)), n— . 1)
7(1—x)+1

Due to its importance, last lemma is called the basic lemma of the theory of critical
GWP.

At X=0 the value R (0)=P{Z >0} represents the survival probability of GWP
{Z,, ne N,} . This probability tends to zero by the order O(l/ n) at infinite growth of number

of generations N, i.e. the critical GWP asymptotically generates. Therefore in this case the
properties of trajectories of GWP are traditionally studied on non-zero trajectories. Thus the
important role is played by g.f.

R.(%)

=3P{Z =jlz >0\x =1-—22, 2
9, (%) ,ZN: {Z,=1]|z,>0}x R(O) )

An important value represents and an asymptotical representation of function R’ (X) as

N — oo. We have found out this representation the neighborhood of point X=1. The latter
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remark associates on the one hand with difficulty of receipt of representation for 0 < X <1, on
the other hand it sufficient for our further discussing. So, the following locally-differential
analog of the basic lemma of the theory of critical GWP is fair.

Lemmal. If A=1,thenas x—1 following asymptotical representation isfair:

R/(X) ~=0gp(X), N> o0, (3)
where theg.f. g,(X) isdefined by (2).
Proof. As the second moment B:=F"(l) is finite, the Taylor expansion gives the
chance to write to us that

F(x)=x+§(x—1)2(l+o(x—1)2), X—>1. (4)
Whence by iteration of F (X) it follows
F.(F(x)-F,(x) :%Rz(x)(Ho(l)), n— oo, (5)
Using the Lagrange theorem in the left part of (5) we have
' _ B 2
Fn(C(X))——Z(F(X)_X) R (x)(1+0(1)), n—>, (©6)

where C(X)=X+(F(X)—X)8, 0<@<1. In turn, owing to the relation (4) we will be
convinced that C(X)~ X, X—1. Considering last fact together with formulas (4), (6), and
taking into account a continuity of derivative of g.f. we will receive as X — 1

Fi(x) ~ {ﬁ&(x)} , N> . (7

Combining (1), (2) and (7), we complete the proof.
The continuous time analogue of the last lemma has been proved in work of the author
[2]. There some are resulted application of this lemma for the Markov Branching Processes.
Remark. As the simple appendix of the lemma 1 we may to result its application in the

proof of classical Yaglom’s theorem, which confirms, that the random variable 2Z_ / Bn
converges in weakly to a random variable distributed by the exponential law; see. [1, ¢.20].
Really, the Laplace transform (LT) ¢, (8):=E [e_wz"/ o

Z > 0] we write down in the form of

9,(0) =9g,(6,) and, after differentiating it, taking into account (2) and (3), we receive
21(0)~=9:(0,) ==0,(0), N>, (8)
where 6, :=exp{—26/Bn}, & >0. As the LT of exponential law is the solution of differential

equation

P'(0)+9’(0)=0,
with the initial condition ¢(0)=1, then according to ideas of work [2], the equation (8)
confirms that

1
0)—>——, N> w.
?a(0) 120 o0

The last convergence is equivalent to the statement of Yaglom’s theorem.
In the present paper we are discussing some applications of the lemma 1 in researches
of asymptotic properties of Q-processes.

The Q-process is the homogeneous Markov chain {Wn, ne NO} with initial state
W, =1, which is defined by transition probabilities
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QE”) = I:){Wn+k = J |Wk = I} = rlnilz}op{zmk = J | Zk = i’ Zn+k+m > 0}
for n,i, j,k € N. After calculation we will be convinced that
Q" = P{Zu =] 2 =il ©)

A
on details see [1, pp. 56-58]. Further we need the g.f.

W (0= > Qmx.

jeN,

From equality (9) and taking into account the iteration for g.f. F (X), we will receive that
i i-1
W, (%) =[F,()] W, (%),
where g.f. W, (x) =W () = E[an

W, zl] is form of

W, (X) =—-XxR(X), neN, (10)
Further discussion gives to us that the following limit exists:
lim MW" (X) = lim n°W, (X) =: x(X), (11)
n—oo N—o0

and limit g.f. u(X) = ZkeN Hy X* satisfies the functional equation
W (X) u(F (X)) = F(X)(X) .

Besides the non-negative numbers { M., Ne N} form a stationary measure for Q-processes.

Moreover z M. =0, and
jeN ]

20

Q" = u; (1+0(1)), N> 0. (12)
Theorem 1. Let A=1 and the stationary measure {z,, ne N} of Q-process is
given by (12). Then

.1 2
Hm—[ g+, +. .+ 1] = (13)

n—oo n ? ’
Proof. By using (1) and (2), the formula (3) we transform to a kind of
, 4 1
X)~——F——3>
R1( ) BZnZ (I_X)2
as X— 1. Considering equalities (10) and (11), from last relation we will receive that

4 1

IU(X) ~ Em, X—1. (14)

Now we are in conditions of well-known Hardy-Littlewood Tauberian theorem, according to
which each of relations (13) and (14) attract another.

The theorem is proved.

The statement of the lemma 1 much more simplifies the proof of the following theorem,
observed by T.Harris in 1951.

Theorem 2[1, p.59]. Let A=1. Thenfor any x>0

n— oo,

lim P W, <xbt=l-e*+2xe**.
N—oo EWn

Proof. Consider LT y,(0) = E[eﬁﬁw"/ EW“] of the variable W, /EW, and in view of
equality (10), we will write down it in a form of
W (0) = _e W, R ( E ) ‘

By means of (10) we can calculate, that
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EW, =W/(1)=Bn+1.

Considering last expression and owing to relations (3) and (8) we will have
0
v,(0)~ 9, (Ej n—o.
We have noticed in remark, that ¢ (8) — 1/[1+ 8] as n—> oo. Hence, we conclude, that

v (0)>— N

2
[l—l—:l
2

Received LT corresponds to the Erlang’s density 4xe %, X>0 of the first order, received by

compositions of two exponential laws with identical parameter A =2. It is equivalent to
statement of the theorem.

We notice that the theorem 2 in the monograph [1] has been proved by means of a
consequence of Helly’s theorem.
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