TECHNIQUE OF CONSTRUCTION OF ONE CLASS ORTHOGONAL
 BINARY 3D -SEQUENCES

Fikrat Feyziyev ${ }^{1}$ and Zamina Samadova ${ }^{2}$

'Sumgayit State University, Sumgayit, Azerbaijan, FeyziyevFG@mail.ru
${ }^{2}$ Azerbaijan University of Languages, Baku, Azerbaijan

In the report the question of obtain of conditions of orthogonality of input sequences for one class $3 D$-nonlinear modular dynamical systems ($3 D$ - NMDS) $[1,2]$ and on the basis of it development of a technique of construction of orthogonal input sequences for this system is considered. Such sequences are used in the solution of a problem of synthesis for various classes binary modular dynamic systems [1].

Let's consider NMDS with the maximal degree of the nonlinearity s, fixed depth of memory n_{0} and sets of limited connection $P=P_{1} \times P_{2}=\left\{p_{1}(1), \ldots, p_{1}\left(r_{1}\right)\right\} \times\left\{p_{2}(1), \ldots, p_{2}\left(r_{2}\right)\right\}$, which is described following two valued analogues of Volterra's polynomial [2]

$$
\begin{align*}
y\left[n, c_{1}, c_{2}\right] & =\sum_{i=1}^{s} \sum_{i_{1}=1}^{\lambda_{i}} \sum_{j \in L_{1}\left(\ell_{1}\right)} \sum_{\bar{\tau} \in L_{2}\left(\ell_{2}\right)} \sum_{\bar{n}_{2} \in \Gamma\left(\ell_{1}, \ell_{2}, \bar{m}\right)} h_{i, i_{1}}\left[\bar{j}, \bar{\tau}, \bar{n}_{2}\right] \times \tag{1}\\
& \times \prod_{(\alpha, \beta, \sigma) \in Q_{1}\left(i, i_{1}\right)} \vartheta_{i, \bar{i}_{1}}\left[n-n_{1}(\alpha, \beta, \sigma), c_{1}+p_{1}\left(j_{\alpha}\right), c_{2}+p_{2}\left(\tau_{\beta}\right)\right], G F(2) .
\end{align*}
$$

Here $n \in T=\{0,1,2, \ldots\}, c_{i} \in\{\ldots,-1,0,1, \ldots\}, i=\overline{1,2} ; y\left[n, c_{1}, c_{2}\right] \in G F(2)$ is output sequence of NMDS ; $\vartheta_{i, i_{1}}\left[n, c_{1}, c_{2}\right] \in G F(2)$ is input sequence of NMDS and enters in its those inputs, which correspond i_{1} - th trio ($\ell_{1}, \ell_{2}, \bar{m}$) from sets $F(i) ; \lambda_{i}$ there is the number of elements of set $F(i)$;
$P_{i}=\left\{p_{i}(1), \ldots, p_{i}\left(r_{i}\right)\right\}, \quad p_{i}(1)<\ldots<p_{i}\left(r_{i}\right), \quad p_{i}(j) \in\{\ldots,-1,0,1 \ldots\} j=1, \ldots, r_{i} \quad i=\overline{1,2}$, besides, $p_{i}(1)$ and $p_{i}\left(r_{i}\right)$ are finite integers $(i=\overline{1,2})$;

$$
\begin{gathered}
F(i)=\left\{\left(\ell_{1}, \ell_{2}, \bar{m}\right) \mid \bar{m}=\left(m_{1,1}, \ldots, m_{1, \ell_{2}}, \ldots, m_{\ell_{1}, \ell_{2}}\right), \sum_{\alpha=1}^{\ell_{1}} \sum_{\beta=1}^{\ell_{2}} m_{\alpha, \beta}=i ; \quad m_{\alpha, \beta} \in\left\{0, \ldots, n_{0}+1\right\},\right. \\
\alpha=\overline{1, \ell_{1}}, \beta=\overline{1, \ell_{2}} ; \text { For all } \alpha \in\left\{1, \ldots, \ell_{1}\right\} \text { exists such } \beta \in\left\{1, \ldots, \ell_{2}\right\}, \\
\text { that } m_{\alpha, \beta} \neq 0 \text { and for all } \beta \in\left\{1, \ldots, \ell_{2}\right\} \text { exists such } \alpha \in\left\{1, \ldots, \ell_{1}\right\}, \\
\\
\text { that } \left.m_{\alpha, \beta} \neq 0 ; \ell_{i} \in\left\{1, \ldots, r_{i}\right\}, i=\overline{1,2}\right\} ;
\end{gathered}
$$

$Q_{0}\left(i, \ell_{1}, \ell_{2}, \bar{m}\right)=\left\{(\alpha, \beta) m_{\alpha, \beta}\right.$ is komponent of vektors \bar{m} and $\left.m_{\alpha, \beta} \neq 0, \alpha=\overline{1, \ell_{1}}, \beta=\overline{1, \ell_{2}}\right\}$;

$$
L_{1}\left(\ell_{1}\right)=\left\{\left(j_{1}, \ldots, j_{\ell_{1}}\right) \mid \leq j_{1}<\ldots<j_{\ell_{1}} \leq r_{1}\right\}, \quad L_{2}\left(\ell_{2}\right)=\left\{\left(\tau_{1}, \ldots, \tau_{\ell_{2}}\right) \mid \leq \tau_{1}<\ldots<\tau_{\ell_{2}} \leq r_{2}\right\} ;
$$

$$
\Gamma_{1}\left(m_{\alpha, \beta}\right)=\left\{\bar{n}_{\alpha, \beta}=\left(n_{1}(\alpha, \beta, 1), \ldots, n_{1}\left(\alpha, \beta, m_{\alpha, \beta}\right)\right) \mid 0 \leq n_{1}(\alpha, \beta, 1)<\ldots<n_{1}\left(\alpha, \beta, m_{\alpha, \beta}\right) \leq n_{0}\right\} ;
$$

$$
\begin{gathered}
\bar{m}=\left(m_{1,1}, \ldots, m_{1, \ell_{2}}, \ldots, m_{\ell_{1}, \ell_{2}}\right) \bar{n}_{2}=\left(\bar{n}_{1,1}, \ldots, \bar{n}_{1, \ell_{2}}, \ldots, \bar{n}_{\ell_{1}, \ell_{2}}\right) ; \\
Q_{1}\left(i, i_{1}\right)=\left\{(\alpha, \beta, \sigma) \mid \sigma \in\left\{1, \ldots, m_{\alpha, \beta}\right\}, \quad(\alpha, \beta) \in Q_{0}\left(i, \ell_{1}, \ell_{2} \bar{m}\right)\right\} ;
\end{gathered}
$$

For all $\bar{n}_{\alpha, \beta} \in \Gamma_{1}\left(m_{\alpha, \beta}\right), \alpha=\overline{\overline{1, \ell_{1}}}, \beta=\overline{1, \ell_{2}}$ set of all block vectors (collections) \bar{n}_{2} is designated as $\Gamma\left(\ell_{1}, \ell_{2}, \bar{m}\right)$.

Let $n \in[0, N] \equiv\{0,1, \ldots, N\}, \quad c_{1} \in\left[0, C_{1}\right] \equiv\left\{0,1, \ldots C_{1}\right\}, \quad c_{2} \in\left[0, C_{2}\right] \equiv\left\{0,1, \ldots C_{2}\right\}$.
By $\bar{n}_{2, k}$ we shall designate k - th an element in $\Gamma\left(\ell_{1}, \ell_{2}, \bar{m}\right)$, and components of a vectors $\bar{n}_{2, k}$ is designated as $n_{1}^{(k)}(\alpha, \beta, \sigma)$. Let

$$
\begin{equation*}
V_{0}\left(i, i_{1}, \bar{j}, \bar{\tau}, \bar{n}_{2, k}\right)=\left\{\prod_{(\alpha, \beta, \sigma) \in \mathcal{Q}_{1}\left(i, i_{1}\right)} \vartheta_{i, i_{1}}\left[n-n_{1}^{(k)}(\alpha, \beta, \sigma), c_{1}+p_{1}\left(j_{\alpha}\right), c_{2}+p_{2}\left(\tau_{\beta}\right)\right]\right\} \tag{2}
\end{equation*}
$$

To each trio $\left(n, c_{1}, c_{2}\right), n \in[0, N], c_{1} \in\left[0, C_{1}\right], \mathrm{c}_{2} \in\left[0, C_{2}\right]$ in a matrix $V_{0}\left(i, i_{1}, \bar{j}, \bar{\tau}, \bar{n}_{2, k}\right)$ corresponds a line. Let

$$
\begin{gather*}
V_{1}\left(i, i_{1}, \bar{j}, \bar{\tau}\right)=\left(V_{0}\left(i, i_{1}, \bar{j}, \bar{\tau}, \bar{n}_{2,1}\right) \ldots V_{0}\left(i, i_{1}, \bar{j}, \bar{\tau}_{,}, \bar{n}_{2, \mid \Gamma\left(\ell_{1}, \ell_{2}, \bar{m} \mid\right.}\right)\right) \\
\left.V_{2}\left(i, i_{1}\right)=\left(V_{1}\left(i, i_{1}, \bar{j}_{1}, \bar{\tau}_{1}\right) \ldots V_{1}\left(i, i_{1}, \bar{j}_{1}, \bar{\tau}_{\left|L_{2}\left(\ell_{2}\right)\right|}\right) \ldots V_{1}\left(i, i_{1}, \bar{j}_{\left|L_{1}\left(\ell_{1}\right)\right|}\right), \bar{\tau}_{\left|L_{2}\left(\ell_{2}\right)\right|}\right)\right) \tag{3}\\
V_{3}(i)=\left(V_{2}(i, 1) \ldots V_{2}(i,|F(i)|) V=\left(V_{3}(1) \ldots V_{3}(s)\right) .\right.
\end{gather*}
$$

If in a block matrix V for all sub matrixes we shall write it all elements, then we shall receive an simple matrix with dimensions $(N+1)\left(C_{1}+1\right)\left(C_{2}+1\right) \times r^{*}$, where $r^{*}=\sum_{i=1}^{s} C_{\left(n_{0}+1\right) r_{1} r_{2}}^{i}$.

If a matrix V formed from

$$
\begin{equation*}
\left\{\vartheta_{i, i_{1}}\left[n, c_{1}, c_{2}\right]: n \in[0, N], \quad c_{1} \in\left[0, C_{1}\right], \quad c_{2} \in\left[0, C_{2}\right]\right\}, i_{1}=\overline{1, \lambda_{i}}, \quad i=\overline{1, s} \tag{4}
\end{equation*}
$$

by formulas (2), (3) and satisfies to conditions of orthogonality

$$
\begin{equation*}
V^{T} \cdot V=\operatorname{diag}\left[\hat{\vartheta}_{1,1}, \ldots, \hat{\vartheta}_{r^{*}, r^{*}}\right] ; \quad \hat{\vartheta}_{\alpha, \alpha}>0, \alpha=1, \ldots, r^{*} \tag{5}
\end{equation*}
$$

then sequences (4) are called orthogonal input sequences for $3 D$-NMDS (1).
Let's consider the problem findings of conditions of orthogonality for sequences.
Let's designate by $r_{1}\left(i, i_{1}\right), r_{2}\left(i, i_{1}\right), r_{3}(i)$ are designate number of columns of a matrix $V_{1}\left(i, i_{1}, \bar{j}, \bar{\tau}\right), \quad V_{2}\left(i, i_{1}\right), V_{3}(i)$ accordingly.

Theorem 1. Let: a) for each $i_{1} \in\left\{1, \ldots, \lambda_{i}\right\}, i \in\{1, \ldots, s\}$ sequence $\bar{\vartheta}_{i, i_{1}}\left[n, c_{1}, c_{2}\right]$ is $\{0,1\}$-sequence with the period $T_{i, i_{1}}+1, A_{1}\left(i, i_{1}\right)+1$ and $A_{2}\left(i, i_{1}\right)+1$ accordingly on argument n, c_{1} and c_{2}, and besides,

$$
\begin{gather*}
\bar{V}_{2}\left(i, i_{1}\right)^{\mathrm{T}} \cdot \bar{V}_{2}\left(i, i_{1}\right)=\operatorname{diag}\left\{d_{1,1}\left(2, i, i_{1}\right), \ldots, d_{r_{2}\left(i, i_{1}\right), r_{2}\left(i, i_{1}\right)}\left(2, i, i_{1}\right)\right\}, \\
d_{\alpha, \alpha}\left(2, i, i_{1}\right)>0, \alpha=1, \ldots, r_{2}\left(i, i_{1}\right), \tag{6}
\end{gather*}
$$

where $\quad d_{\alpha, \alpha}\left(2, i, i_{1}\right)$-elements of a matrix $\quad \bar{V}_{2}\left(i, i_{1}\right)^{\mathrm{T}} \cdot \bar{V}_{2}\left(i, i_{1}\right)$, and a matrix $\bar{V}_{0}\left(i, i_{1}, \bar{j}, \bar{\tau}, \bar{n}_{2, k}\right), \bar{V}_{1}\left(i, i_{1}, \bar{j}, \bar{\tau}\right), \bar{V}_{2}\left(i, i_{1}\right), \bar{V}_{3}(i), \bar{V}$ it is formed from sequences

$$
\left\{\bar{\vartheta}_{i, i_{1}}\left[n, c_{1}, c_{2}\right]: n \in\left[0, T_{i, i_{1}}\right], \quad c_{1} \in\left[0, A_{i, i_{1}}\right], c_{2} \in\left[0, B_{i, i_{1}}\right]\right\}
$$

analogies by formulas (2), (3);
b) For each $i_{1} \in\left\{1, \ldots, \lambda_{i}\right\}, i \in\{1, \ldots, s\}$ and $\left(n, c_{1}, c_{2}\right) \in\left[0, T^{\prime}\right] \times\left[0, C_{1}^{\prime}\right] \times\left[0, C_{2}^{\prime}\right] \subset$ $\subset[0, N] \times\left[0, C_{1}\right] \times\left[0, C_{2}\right]$ sequence $\vartheta_{i, i_{1}}^{\prime}\left[n, c_{1}, c_{2}\right]$ is defining by follows relation:

$$
\vartheta_{i, i_{1}}^{\prime}\left[n, c_{1}, c_{2}\right]= \begin{cases}\bar{\vartheta}_{i, i_{1}}\left[n, c_{1}, c_{2}\right], & \text { if }\left(n, c_{1}, c_{2}\right) \in F\left(i, i_{1}\right) \times G_{1}\left(i, i_{1}\right) \times G_{2}\left(i, i_{2}\right), \tag{7}\\ 0 & , \text { if }\left(n, c_{1}, c_{2}\right) \notin F\left(i, i_{1}\right) \times G_{1}\left(i, i_{1}\right) \times G_{2}\left(i, i_{2}\right),\end{cases}
$$

where $F\left(i, i_{1}\right)=\left\lfloor N_{1}\left(i, i_{1}\right)-\tau_{i, i_{1}}, N_{1}\left(i, i_{1}\right)-\tau_{i, i_{1}}+T_{i, i_{1}}\right\rfloor \subset\left[0, T^{\prime}\right]$,

$$
\begin{aligned}
& G_{1}\left(i, i_{1}\right)=\left[D_{1}\left(i, i_{1}\right), D_{1}\left(i, i_{1}\right)+A_{1}\left(i, i_{1}\right)\right] \subset\left[0, C_{1}^{\prime}\right], \\
& G_{2}\left(i, i_{1}\right)=\left[D_{2}\left(i, i_{1}\right), D_{2}\left(i, i_{1}\right)+A_{2}\left(i, i_{1}\right)\right] \subset\left[0, C_{2}^{\prime}\right]
\end{aligned}
$$

and

$$
t_{i, i_{1}}= \begin{cases}\max \left\{m_{1,1}, \ldots, m_{1, \ell_{2}}, . ., m_{\ell_{1}, \ell_{2}}\right\}-1, & \text { if } N_{1}\left(i, i_{1}\right)>0 \\ 0 & , \text { if } N_{1}\left(i, i_{1}\right)=0\end{cases}
$$

For each $i_{1} \in\left\{1, \ldots, \lambda_{i}\right\}, i \in\{1, \ldots, s\}$ natural numbers $N_{1}\left(i, i_{1}\right), D_{1}\left(i, i_{1}\right), D_{2}\left(i, i_{1}\right)$ and domain $\left[0, T^{\prime}\right] \times\left[0, C_{1}^{\prime}\right] \times\left[0, C_{2}^{\prime}\right]$ are those, that for each $i_{1} \in\left\{1, \ldots, \lambda_{i}\right\}, \quad i \in\{1, \ldots, s\} i_{1}^{\prime} \in\left\{1, \ldots, \lambda_{i^{\prime}}\right\}, i^{\prime} \in\{1, \ldots, s\}$, where $\left(i, i_{1}\right) \neq\left(i^{\prime}, i_{1}^{\prime}\right)$, are true a relation $F\left(i, i_{1}\right) \cap F\left(i^{\prime}, i_{1}^{\prime}\right)=\varnothing$ or $G_{1}\left(i, i_{1}\right) \cap G_{1}\left(i^{\prime}, i_{1}^{\prime}\right)=\varnothing$ or $G_{2}\left(i, i_{1}\right) \cap G_{2}\left(i^{\prime}, i_{1}^{\prime}\right)=\varnothing$;
c) $\vartheta_{i, j_{1}}\left[n, c_{1}, c_{2}\right], i_{1}=1, \ldots, \lambda(i), i=1, . ., s$ are periodic continuation of $\vartheta_{i, i_{1}}^{\prime}\left[n, c_{1}, c_{2}\right]$ from $\left[0, T^{\prime}\right] \times\left[0, C_{1}^{\prime}\right] \times\left[0, C_{2}^{\prime}\right]$ to other parts of domain $[0, N] \times\left[0, C_{1}\right] \times\left[0, C_{2}\right]$ with the period $T_{i, i_{1}}+1, A_{1}\left(i, i_{1}\right)+1$ и $A_{2}\left(i, i_{1}\right)+1$ accordingly on arguments n, c_{1} and c_{2}. Then a matrix V is orthogonally in sense (5).

The theorem 1 gives a technique for construction of input test sequences. By this technique $\vartheta_{i, i_{1}}\left[n, c_{1}, c_{2}\right], \quad i_{1}=1, \ldots, \lambda_{i}, i=1, \ldots, s$ is construction as follows:

1. Construction of auxiliary test sequences $\bar{\vartheta}_{i, 1_{1}}\left[n, c_{1}, c_{2}\right], i_{1}=1, \ldots, \lambda_{i}, i=1, . ., s$ according to a condition of the theorem 1 separately, i.e. irrespective from $\bar{\vartheta}_{i, i_{1}}\left[n, c_{1}, c_{2}\right], i_{1}^{\prime}=1, \ldots, \lambda_{i}, i^{\prime}=1, \ldots, s, \quad\left(i^{\prime}, i_{1}^{\prime}\right) \neq\left(i, i_{1}\right)$.
2. According to a condition of the theorem 1 dividing a domain of tests $\bar{\vartheta}_{i, i_{1}}[n, c], \quad i_{1}=1, \ldots, \lambda_{i}, i=1, \ldots, s$ on argument n or c_{1} or c_{2} or on two or three arguments by the formula (7) tests $\vartheta_{i, 1_{1}}^{\prime}\left[n, c_{1}, c_{2}\right], i_{1}=1, \ldots, \lambda_{i}, i=1, \ldots, s$ are construction in the domain $\left[0, T^{\prime}\right] \times\left[0, C_{1}^{\prime}\right] \times\left[0, C_{2}^{\prime}\right] \subset[0, N] \times\left[0, C_{1}\right] \times\left[0, C_{2}\right]$.
3. According to a condition of the theorem 1 periodic continuation $\vartheta_{i, i_{1}}^{\prime}\left[n, c_{1}, c_{2}\right], \quad i_{1}=1, \ldots, \lambda_{i}, \quad i=1, . ., s$ from domain $\left[0, T^{\prime}\right] \times\left[0, C_{1}^{\prime}\right] \times\left[0, C_{2}^{\prime}\right]$ with the period $T^{\prime}+1, C_{1}^{\prime}+1$ and $C_{2}^{\prime}+1$ accordingly arguments n, c_{1} and c_{2} in other parts of domain $[0, N] \times\left[0, C_{1}\right] \times\left[0, C_{2}\right] \quad$ the \quad test $\quad \vartheta_{i, i_{1}}\left[n, c_{1}, c_{2}\right], \quad i_{1}=1, \ldots, \lambda_{i}, i=1, \ldots, s$ is construction of them.

Thus, one of the primary problems of construction of input test sequences $\vartheta_{i, j_{1}}\left[n, c_{1}, c_{2}\right], i_{1}=1, \ldots, \lambda_{i}, i=1, \ldots, s \quad$ is construction of auxiliary test sequences $\bar{\vartheta}_{i, 1_{1}}\left[n, c_{1}, c_{2}\right], i_{1}=1, \ldots, \lambda_{i}, i=1, \ldots, s$ according to a condition of orthogonality (6).

Let $\theta\left(i, i_{1}\right)$ there is an amount of nonzero components of a vector \bar{m}. Clearly, that $\theta\left(i, i_{1}\right)=\left|Q_{0}\left(i, \ell_{1}, \ell_{2}, \bar{m}\right)\right|$. Let the sequence of nonzero components of a vector \bar{m} is following sequence:

$$
m_{\xi_{1}, 1,1}, \ldots, m_{\xi_{1,1,1}, 1}, m_{\xi_{2,1}, 2}, \ldots, m_{\xi_{2}, v_{2}, 2}, \ldots, m_{\xi_{\ell_{2}, 1,1}, \ell_{2}}, \ldots, m_{\xi_{\ell_{2}, v v_{2}}, \ell_{2}} .
$$

Clearly, that $\quad \xi_{\alpha, v_{\alpha}} \leq \ell_{1}, \alpha=1, \ldots, \ell_{2}, \bigcup_{\alpha=1}^{\ell_{2}}\left\{\xi_{\alpha, 1}, \ldots, \xi_{\alpha, v_{\alpha}}\right\}=\left\{j_{1}, j_{2}, \ldots, j_{\ell_{1}}\right\}, \quad \sum_{\ell=1}^{\ell_{2}} v_{\ell}=\theta\left(i, i_{1}\right)$.
Let's give some data:

1. Let $A_{1}\left(i, i_{1}\right)$ also $A_{2}\left(i, i_{1}\right)$ there are any natural numbers and sets $R, M_{1}, \ldots, M_{\theta\left(i, i_{1}\right)}$ are formed from elements of set $\left[0, A_{1}\left(i, i_{1}\right)\right] \times\left[0, A_{2}\left(i, i_{2}\right)\right]$. Numbers $A_{1}\left(i, i_{1}\right)$ and $A_{2}\left(i, i_{1}\right)$ are those, that:
a) For each pair $\left(c_{1}, c_{2}\right) \in\left[0, A_{1}\left(i, i_{1}\right)\right] \times\left[0, A_{2}\left(i, i_{1}\right)\right]$ true inequality

$$
\left|\left\{\left(c_{1}, c_{2}\right)+P_{1} \times P_{2}\right\} \cap\left(\bigcup_{v=1}^{\theta\left(i, i_{1}\right)} M_{v}\right)\right| \leq \theta\left(i, i_{1}\right) ;
$$

b) If for any pair $\left(c_{1}, c_{2}\right) \in\left[0, A_{1}\left(i, i_{1}\right)\right] \times\left[0, A_{2}\left(i, i_{1}\right)\right]$ true relation

$$
\left|\left\{\left(c_{1}, c_{2}\right)+P_{1} \times P_{2}\right\} \cap\left(\bigcup_{v=1}^{\theta\left(i, i_{1}\right)} M_{v}\right)\right|=\theta\left(i, i_{1}\right),
$$

then found such pair $(\bar{j}, \bar{\tau}) \in L_{1}\left(\ell_{1}\right) \times L_{2}\left(\ell_{2}\right)$ at which for all $\alpha=1, \ldots, \ell_{1}, \beta=1, \ldots, \ell_{2}$ it is carried out $\left(c_{1}+p_{1}\left(j_{\alpha}\right), c_{2}+p_{2}\left(\tau_{\beta}\right)\right) \in M_{v}$, where $v=\sum_{\ell=1}^{\beta-1} v_{\ell}+\alpha$, and for all $\alpha \notin\left\{j_{1}, \ldots, j_{\ell_{1}}\right\}$ and $\beta \notin\left\{\tau_{1}, \ldots, \tau_{\ell_{2}}\right\}$ will be executed $\left(c_{1}+p_{1}(\alpha), c_{2}+p_{2}(\beta)\right) \in R$;
c) For each $\bar{j} \in L_{1}\left(\ell_{1}\right)$ and $\bar{\tau} \in L_{2}\left(\ell_{2}\right)$ found such $c_{1} \in\left[0, A_{1}\left(i, i_{1}\right)\right]$ and $\mathrm{c}_{2} \in\left[0, A_{2}\left(i, i_{1}\right)\right]$ at which for all $\alpha=1, \ldots, \ell_{1}, \beta=1, \ldots, \ell_{2}$ it is carried out $\left(c_{1}+p_{1}\left(j_{\alpha}\right), c_{2}+p_{2}\left(\tau_{\beta}\right)\right) \in M_{v}$, where $v=\sum_{\ell=1}^{\beta-1} v_{\ell}+\alpha$, and for all $\alpha \notin\left\{j_{1}, \ldots, j_{\ell_{1}}\right\}$ and $\beta \notin\left\{\tau_{1}, \ldots, \tau_{\ell_{2}}\right\}$ will be executed $\left(c_{1}+p_{1}(\alpha), c_{2}+p_{2}(\beta)\right) \in R$;
2. For every one $v \in\left\{1, \ldots, \theta\left(i, i_{1}\right)\right\}$ two valued function $z_{\ell}[n]$ is function with the period $T_{v}^{\prime}+1$ and at $\sigma>T_{v}^{\prime}$ a matrix

$$
B_{v}(\sigma)=\left(\prod_{\ell=1}^{\delta_{v}} z_{v}\left[n-n_{k}^{\prime}(\ell)\right]\right), n=\overline{0, \sigma}, k=\overline{1,|L|}
$$

satisfies to conditions of orthogonality, where $\left(n_{k}^{\prime}(1), \ldots, n_{k}^{\prime}\left(\delta_{v}\right)\right)$ is k - th an element of set $L=\left\{\left(n^{\prime}(1), \ldots, n^{\prime}\left(\delta_{v}\right)\right) \mid 0 \leq n^{\prime}(1)<\ldots<n^{\prime}\left(\delta_{v}\right) \leq n_{0}\right\}$ and $\delta_{v}=m_{\alpha, \beta}$, and between v, α and β there is relation $v=\sum_{\ell=1}^{\beta-1} v_{\ell}+\alpha$.
3. For all $\left(n, c_{1}, c_{2}\right) \in\left[0, T_{i, i_{1}}\right] \times\left[0, A_{1}\left(i, i_{1}\right)\right] \times\left[0, A_{2}\left(i, i_{1}\right)\right]$ sequence $\vartheta_{i, i_{1}}\left[n, c_{1}, c_{2}\right]$ is defining by follows relation:
where

$$
T_{i, i_{1}}=\left(\prod_{v=1}^{\theta\left(\mathrm{i}, \mathrm{i}_{1}\right)}\left(T_{v}^{\prime}+1\right)\right)-1
$$

The Third International Conference "Problems of Cybernetics and Informatics" September 6-8, 2010, Baku, Azerbaijan. Section \#3 "Modeling and Identification" www.pci2010.science.az/3/10.pdf

Theorem 2. Let for fixed $\left(i, i_{1}\right)$ conditions 1-3 are satisfied and $\left\lfloor 0, T_{i, i_{1}}\right\rfloor \times\left[0, A_{1}\left(i, i_{1}\right)\right] \times\left[0, A_{2}\left(i, i_{1}\right)\right]$ there is area of definition of sequences $\bar{\vartheta}_{i, i_{1}}[n, c]$. If elements from set $\left\{T_{v}^{\prime}+1 \mid v=1, \ldots, \theta\left(i, i_{1}\right)\right\}$ mutually prime numbers, then the matrix $\overline{V_{2}}\left(i, i_{1}\right)$ satisfies to conditions of orthogonality (6).

References

1. Feyziyev F.G., Faradzeva M.R. The modular sequential machine: The basis results of theory and application (In Russian), "Elm" Publishing House, Baku (2006), 234 p.
2. Feyziyev F.G., Samedova Z.A. A problem of synthesis the binary 3D - nonlinear modular dynamical system// Transaction of Azerbaijan National Academy of Sciences, Series of Physical-Technical and Mathematical Sciences: Informatics and Control Problems, Vol. XXIX, No. 6, 2009, PP. 126-133.
