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The main aim of this work consists in the investigation of new matrix structures that can be 
used in constructing cryptographic methods and algorithms. The idea is that these constructions 
must perform the same functions as in the well-known algorithms operating via an open 
channel. Here, in the first place we mean the Diffie-Hellman protocol, i.e., our intention is to 
develop functional schemes with the aid of matrices which are analogous to a one-way function. 
An idea of matrix-key construction is not new [1], though has recently again evoked interest in 
scientific circles [2]. The justification of efforts undertaken by scientists evidently lies in fast-
operating schemes and software solutions for matrix structures [2,3].  

We want to draw attention to the fact that some non-degenerate matrices (matrices with 
nonzero determinants) contain an intro-matrix recurrent dependence [4,5]. This dependence 
exists among matrix rows and columns. However it is not a usual linear dependence. That is 
why such matrices remain non-degenerate.  

Matrices of this kind can be easily broken when they are used for cryptographic purposes. It 
is possible to construct special classes with an intro-matrix recurrent dependence, but, in a 
number of cases (especially for matrices of large size) the revealing of an intro-matrix recurrent 
dependence is not a simple task.  

Matrices with an intro-matrix recurrent dependence can be constructed with the aid of   the 
Galois field )p(GF n . For the sake of simplicity, this construction will be considered here   as a 
field of polynomials )(GF n2  modulo an irreducible polynomial )x(p  over )(GF 2 . For 
example, a multiplicative group of the field )(GF 32  generated by means of α , which is the 
root of a primitive polynomial 31 xx)x(p ++= , has the form  [6]: 
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The multiplicative group (1) is written in terms of powers of α , the corresponding entries 
are written in terms of polynomials of α  with their corresponding vectors which together with a 
zero vector form the vector space  3=nV  over the field  )(GF 2 .   

By virtue of (1), we can write, for example, a multiplicative group of matrices A , 2A , 3A , . 
. . , IA =7  ( I  is the unit matrix) as follows:  
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This group is generated by the primitive matrix  A  which corresponds to an element α (it is 
assumed that  (1) and (2) are isomorphic). It is obvious that the order of each matrix iA  
coincides with the order of an element iα . All matrices iA (2) have an intro-matrix recurrent 
dependence predetermined by the polynomial )x(p . We will illustrate this dependence using 

31 xx)x(p ++=  as an example. Any matrix from (2) consists of 92 =n  unknowns: 
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However, if we take into account an intro-recurrent dependence, then we can easily obtain from 
(3) a matrix iA1  with the number of unknowns equal to 3=n : 
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This matrix can be easily broken even in the case of a single cryptographic application, for 
example, when it is used to realization the operation of multiplication of a vector by a matrix 
(we mean, say, the realization of the Diffie-Hellman protocol on matrices). 

It is obvious that the number of matrices with an intro-recurrent dependence corresponds to 
the number of irreducible polynomials used for the construction of )(GF n2 , but may be greater.  
In our opinion, this question is essential and therefore we consider it in the next example.  

As an example we give a construction, different from (2), of a multiplicative group of 
matrices with period 3=e : 
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In the matrices A , 2A  and 3A  (5) the observed recurrent dependence has a different form. 
It is connected with a certain sequence of elements from (1). For example, the rows in the 
matrix A   (5) are the vectors corresponding to the elements 3α , 5α , 07 α=α  (1), while in the 
matrix  2A (5) they are the vectors corresponding to the elements 2α , 6α , 310 α=α  (1), and the 
rows in the matrix 3A  (5) are the vectors corresponding to the elements 0α , 1α , 2α  (1). 

It should be said that it is not evidently a simple matter to reveal and count such modified 
dependences having a regular character. However, if the considered dependence )k(fl =  is 
linear, as in the example (5) (where l  is the exponent of the power of a field element lα  (1), 
and k  is the matrix row number, n,...,,k 21= ), then the revealing of such a dependence may 
turn out to be a relatively simple task. The dependence )k(fl =   shown in Fig. 1 for matrices 
of the group (5) is linear.  It is obvious that the dependence )k(fl =  for all the above-
considered matrices with an intro-matrix recurrent dependence is also linear. However, as 
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different from the matrices (5) (see Fig. 1), the linearity of all matrices of the form (2) is one and 

the same (i.e. β  is a constant value) and can be easily determined. Therefore the intro-matrix 
recurrent dependence in them is trivial. 

Fig. 1 The linear dependence )(kfl =  for the multiplicative group (5). 
  

In reality, not all matrix sets (groups) will have the linear dependence )k(fl = .  For 
example, matrices of the multiplicative group (6), with period 7=e , do not contain the 
recurrent dependences considered above: 
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Summarizing and generalizing the above results, we  distinguish three cases (three kinds of 
matrix sets): 

• For a set of nn×  matrices of the form (2)-(4) we have a trivial intro-matrix recurrent 
dependence; 

• For a set of nn×  matrices of the form (5), we have the linear intro-matrix recurrent 
dependence )k(fl = .  

• For a set of nn ×  matrices, of the form (6), the intro-matrix recurrent dependence is not 
observed.  

Our aim is to construct a multiplicative group of matrices that will be free of an intro-matrix 
recurrent dependence. Besides, each initial nn×  matrix must be primitive, i.e. have a maximal 
order equal to 12 −= ne  and generate a multiplicative group with a maximal period. The 
considered matrix groups are commutative. Formulas (7) show the initial matrices, which, in the 
authors’ opinion, satisfy the conditions discussed above. The construction of initial matrix 
structures is based on the symmetry of elements and at the same time the asymmetry with 
respect to the diagonals is also taken into account.  

The initial 55×  matrix 5=nA  is constructed on the basis of the matrix 3=nA . The next initial 
matrix 7=nA  is constructed on the basis of the matrix 5=nA , i.e. to obtain the matrix 7=nA , the 

matrix 5=nA  is also encircled by a sequence of 1’s and 0’s according to a certain rule. This rule 
also remains in force when constructing the initial matrix 9=nA  on the basis of the matrix 7=nA  
and so on until we obtain an nn×  matrix where 12 −= kn , 1>k , is an integer number.   
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(7) 
Each initial nn×  matrix A∈A  generates a multiplicative group IA,...,A,A,A

n
=−1232 , 

which in the case of a sufficiently large value of  n  ( 150≈n ) generates a set of commutative 
matrices A  (of high power) to be used for cryptographic purposes. 

To realize an alternative algorithm, we should prescribe the initial nn×  matrix A  (the 
matrix A  is open), which generates a multiplicative group of high power A  (see Section 3). 

The algorithm of matrix key exchange via an open channel is realized as follows:  
• Alice chooses (at random) an nn×  matrix A∈1A  and send Bob the vector 1aAb = . 
• Bob chooses (at random) an nn×  matrix A∈2A  and sends Alice the vector 2aAc = , 

where a  is an n -dimensional vector (open), 1A  and 2A  are  the (secret) matrix keys.  
• Alice computes  11 cAk = . 
• Bob computes 22 bAk = , where 1k  and 2k  are the secret keys. kkk == 21  because 

1221 AaAAaAk == . 
The main results obtained in the paper are as follows: 
−  A new method of constructing a special class of matrix sets of high power is worked out. 

In constructing nn×  matrices, the initial matrices are always primitive with a maximal period 
equal to 12 −= ne . The multiplicative group of generated matrices is commutative.  

−  To obtain matrices with the prescribed properties, we investigated the problem of intro-
matrix recurrent dependences.  The results of our investigation led to the conclusion that the 
group of generated matrices contains no intro-recurrent dependences. 

− The matrices of the constructed multiplicative groups can be applied as a one-way 
function.   

− Based on the set of obtained matrices, we developed a matrix key exchange algorithm 
analogous to the Diffie-Hellman protocol, which also can be used in encryption-decryption.   
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