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Poisson processes are known to be useful to model several random phenomena (see for 

instance [1]).  There are a lot of papers devoted to the problem of the intensity function 
estimation at a given point both under parametric and non parametric assumptions [2, 3].In the 
present paper we do not assume any parametric form of the function except that it is continuous 
at the point, and suppose that only a single realization of the process is available on . ],0[ T

Let { }TtNit ii ≤≤= 0,,1,  be a realization of a Poisson point process having 
unknown intensity function )(tλ  on some time interval , where N is the number of points 
falling into . 
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It is well known that the distribution of N  
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“the number of points N falling into  is fixed”, the points of the process obey the 
same law with distribution density function
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It is natural to take the following expression as an estimate of the function ),0(/)( Tt Λλ  
at a point t 
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where  is a sequence of positive real numbers such that and ; the kernel 

is a compact real valued Borel function  on 
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Note that a sample size is a random quantity and we deal with the estimate based on 
random number of observations. Such kinds of kernel estimates were studied under some 
restrictions in [4]. 

Joint distribution of  and N [5] it
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Consider an asymptotic behavior of statistic (1) under following scheme of series: let 

series of observations are done on  with the intensity of the process in n-th trial equals to ],0[ T
)()( tntn λλ = . Denote the value of the statistic (1) in n-th trial  
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where  and ( ) − respectively the number of observations and the realization of the process 
in n-th trial. 
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Theorem 1 (asymptotic unbiasedness). Let the kernel )(⋅K  and the intensity function 

)(⋅λ , in addition, satisfy the following conditions ,( ∞∫
−

T

T
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continuous function at the point t. Then statistic (1) is asymptotically ( ∞→n  in (2)) unbiased. 
Proof. Let  be the conditional density function  given)/( nxpi it nN = , then the expected 

value 
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where  − some constant in respect of n. C,00 =Δ
Take arbitrary 0>ε . If ( )( )TtTTthn /,/min −< , then from compactness and 
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 and the first term on the right-hand side of (3) obviously tends to 

zero as . The theorem is proved. ∞→n
Joint distribution of  [5] Ntt ji ,,
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Theorem 2 (mean-square convergence). Let the assumptions of Theorem 1 hold 
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where the first term is called the variance and the second one is called the bias. As shown in 
Theorem 1 the bias . The variance 
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 Note that according to Newton’s polynom 
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As to choice of the bandwidth in (1) the method of cross-validation developed by M. 
Rudemo [6] and M.M. Brooks, J.S. Marron [7] for kernel estimators can be recommended. 
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