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The general approach for nonparametric estimation of the production function and its 
characteristics depending on the function’s partial derivations is proposed. This approach is 
based on ideas of estimations of functions depending on multivariate density functionals and 
their derivatives [1]. The problem of obtaining of the main parts of the asymptotic mean square 
errors (MSE) of the estimates also resolved by using a piecewise smooth approximation. A 
regression model of the production function is used. 
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According to above given the regression model of the production function 
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the marginal rate of technical substitution of an input  with an input  jx ix

( ) .,,,,,;
)(
)(

)( )1(
1

)1(
1)1(

2
)1(

1
)1(

2
)1(

121 j

i
iijj

j

i
ij b

baaaaaaH
xMP
xMP

xMRTS ==  

Take the following expression as an estimate of the functional (r = 0) 
and its derivatives  (r = 1) at a point x: 
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Here nlYXZ lll ,1),,( == , is the (m+1) -dimensional random sample from p.d.f. , 

 is a sequence of positive bandwidths such that 
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a real number,  is some constant independent on n,  

is a m-dimensional multiplicative kernel function,  
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Recursive estimation is particularly useful in large sample size since (2) can be easily 

updated with each additional observation. The recursive kernel estimate of  was 
introduced in [2] and apparently independently in [3], and has been thoroughly examined in [4].  
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The substitution estimates are often used for the estimation of ratios. The possible 
unboundedness of the ratio estimates at some points (see [5] for details) creates a difficulty in 
the obtaining their MSE. The estimates (3) are called semi-recursive because they can be 
updated sequentially by adding extra terms to both the numerator and denominator when new 
observations became available. We can rewrite (3) as 
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(see [6-8]). Weak and strong universal consistency of such estimates was investigated, for 
instance, in [9]. 

As above mentioned the studying of the asymptotic MSE for  has some 
difficulties due to the possible instability (for example, the denominator in (4) may be close to 
zero), and the theorems for MSE making use of the dominant sequences can not be applied [5, 
10]. The problem can be resolved by using a piecewise smooth approximation. Therefore, 
similar to [10, 11], we use the estimate 
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As shown in [1], the rate of mean square convergence of estimates (4)−(7) depends on 
parameter ν  characterizing the kernel: 
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The main parts of the asymptotic MSE of the estimates (4)−(5) and (6)−(7) is of order 
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impossible to determine the MSE of the estimates [12, 13]. But it is shown in these papers that 
we can find the dominant sequence under 2=ν  if, for example, , and 0)( ≥uK ∞<Y . Under 

2>ν  we can use the piecewise smooth approximation, and it is enough to take even 4≥ν  for 
obtaining the asymptotic MSE. 

In (1) some variables of function )(⋅H  may be absent, for example, all derivatives  
(r = 0 in (1)) or all basic functionals (r = 1 in (1)), otherwise r = 0,1. 
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Then MSE of the estimates (1) can be written in the form 
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Moreover, if the restriction 5) is replaced by 0))(()( ≠= xaHxJ  or , 
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As above mentioned the restriction 5) of Theorem is the most problematical, and we 

don't need one when piecewise smooth approximations (5), (6) are used. 
As to the second order production function’s characteristics, they can be treated the 

same way because they came out of first order characteristics differentiation. 
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