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         Many problems of science and technics are shown with multiparametric finite linear 
difference equation systems. 
          Such problems are used in radiotechnics, telemetrics, automatic controlling, and cosmic 
researching. Linear sequential machines which frequently used in constructing modern 
calculating systems, imitative modeling of object and processes are described with such 
systems. Therefore this systems and the problems which are given by this systems are 
demanded to analyse. It is necessary and actual to find the methods for solving an optimal 
control problems. 
          In this study multiparametric dual linear difference equation systems are analysed and we 
research an optimal controlling problems which are shown below for this systems: 
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         In this study theorems on necessary and sufficient conditions are proved for shown 
problems. Moreover the different necessary and sufficient conditions theorems for 
stable systems are also given also. 

 
I. OPTIMAL CONTROL PROBLEM IN MULTI PARAMETER LINEAR  
           DIFFERENCE EQUATION SYSTEM OF GIVEN PROCESSES 

          Multi parameter difference equation system is defined as follows[3]: 
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machinery of the optimal discrete process is characterized by the pseudo Boolean functions 
given  by: 
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          Definition: If for the system (1) has a unique solution, then we say  is a 
possible control mechanism [5]. 

Xcx ˆ)( ∈ )(cx

          Now for dual non-linear multi parameter finite sequential machinery we can analize the 
following terminal state problem. 
          In order for a given dual non-linear multi parameter finite sequential machinery to run 
from   to  in L steps it has to exist control mechanism so that, the 
functional in (1.2) has to have a minimal value: 
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         II. NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMALITY  

Assume that the system of equations in (1.1) has a unique solution ([3],[4]) and consider 
the problem described in the previous section where ,),()()( dGcccc ∈Φ′= νν ξϕϕ  v= 
1,...,k, [  is a sequential machinary and ])2(GF ),()()())(), cxccc ννν(,( cxchν ξϕξϕ Ψ′=  v= 
1,...,k, [  is a boolean functional.. Then by using this functional we form the following 
sum.  
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          Let  be a piecewise curve connecting to . In the l’th  step where 
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         Let’s include also the  Hamilton-Pontryagin functional  
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If we consider the sum from   to   we get 1+l L
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Conversely we have    where 
 is an optimal state and we get  . This shows that  equation  

(2.4) is correct . This finishes the proof of the necessity condition.  
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         We handle the sufficient condition in a similar way as of  necessity and  from  (2.5) we 
obtain the desired result.  
         Assume that the system in  (1.1) is a equalibrium state. For this case we can prove the 
following necessary and sufficient conditions.    
         Theorem.  In problem (1.3)-(1.5) for control mechanism  and suitable orbit  
the necessary and sufficient condition for optimality is 

)(0 cx )(0 cs

∑ ∑ ∑ ∑
= =

Δ×Δ
),( 1 ),( 1

2
0 ))( cνξ2

00

0 0

)),(,(()))(),(,((
L Lcc

k

cc

k

ccxchcccxch
ν ν

ννννν ϕξϕ )2(,0 GF=  

where the bar denotes the conjugate and the sum on the left is done over the piecewise curve 
connecting   to  with alll possible control mechanism.  0c Lc
Necessity: From the solution of system of equations in (1.3) we have  
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We find the minimum on any curve connecting c0 to cL over all posiible x(c). On this curve  the 
equation is equal to the boolean inequality  
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On the other hand the inequality is equal to  
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Sufficiency: Assume we have equation (2.8). If we write  
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          Here x(c) is any possible control. From the last equation we get x0(c) as the optimal 
control .   

Literature 

1. Boltyanskii, V. G. (1978): Optimal Control of Discrete Systems, John Wiley & Sons,  
      New York.  
2. Richard L.Burden, J.Douglas (1985), Faires: Numerical Analysis-PWS Publishin 

Company, Boston  
3. Gayşun İ.B. (1985), Çok parametreli diferansiyel denklemler için tam çözüm koşulları, 

Minsk  
4. Hacıyev Y.H. (1999), “The existence theorem for terminal control problem in 

processes described by discrete system of equations”, “Second International 
Symposium on Mathematical Computational Applications’’, Qafgaz University 

5. Hacıyev Y.H. (2000), “Lineer olmayan çok parametreli sonlu fark denklemler 
sisteminin analizi”, Devlet İstatistik Enstitüsü, İstatistik Araştırma Sempozyumu, 
Ankara. 


	         II. NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMALITY 
	Literature

