GREEDY ALGORITHMS WITH GUARANTEE VALUE FOR INTEGER KNAPSACK PROBLEM

Urfat Nuriyev ${ }^{1}$ and Aslı Guler ${ }^{2}$
Ege University, Izmir, Turkey
${ }^{1}$ urfat.nuriyev@ege.edu.tr, ${ }^{2}$ asli.glr@gmail.com

Introduction

It is known that Integer Knapsack Problem is NP-hard and there is no polinomial time algorithm unless $\mathrm{P}=\mathrm{NP}$. Consequently, it is important to design algortihms with guarantee value for NP-hard problems [1, 3, 6]. In recent years, many researches on this subject have been doing [2, 4, 5].

In this paper, one-dimensional Integer Knapsack Problems have been studied. Moreover, greedy algorithms have been given to solve these problems, then their guaratee values have been calculated. The concept of complementary problem has been defined for the maximization problem and guaratee values calculated have been improved by this concept.
Integer maximization knapsack problem (IKP) is formulated as

$$
\begin{equation*}
R=\max \left\{\sum_{j \in J} p_{j} x_{j} \mid \sum_{j \in J} a_{j} x_{j} \leq b, x_{j} \in Z^{+} \cup\{0\}, j \in J\right\} \tag{1}
\end{equation*}
$$

Coefficients a_{j}, p_{j}, and value b are generally positive integers.
Supposing that $\frac{p_{1}}{a_{1}} \geq \frac{p_{2}}{a_{2}} \geq \ldots \geq \frac{p_{n}}{a_{n}}$, greedy algorithm , that gives approximate solution for this problem, is given as below:

Tmax Algorithm

A1) $k=1$ and $f=0$;
A2) $x_{k}^{G}=\left\lfloor\frac{b}{a_{k}}\right\rfloor$;
A3) $f=f+p_{k} x_{k}^{G}$;
А4) $b=b-a_{k} x_{k}^{G}$;
А5) $k=k+1$;
A6) If $k>n$ then go to Step8;
A7) If $a_{k} \leq b$ then go to Step2;
A8) $x_{k}^{G}=x_{k+1}^{G}=\ldots=x_{n}^{G}=0$;
A9) Print X^{G}, f;
A10) END.

Calculation of Guarantee Value of Tmax Algorithm

For f-approximate solution found by the algorithm- and R - optimal value- the guaratee value $\Delta=\frac{f}{R}$ is given below. (For $\forall j \in J, a_{j} \leq b$)
Since $R \leq \frac{b}{a_{1}} p_{1}$ and $f \geq\left\lfloor\frac{b}{a_{1}}\right\rfloor p_{1}$;

$$
\begin{aligned}
& \Delta \geq \frac{\left\lfloor\frac{b}{a_{1}}\right\rfloor p_{1}}{\frac{b}{a_{1}} p_{1}} \geq \frac{\left\lfloor\frac{b}{a_{1}}\right\rfloor}{\left\lfloor\frac{b}{a_{1}}\right\rfloor+\left\{\frac{b}{a_{1}}\right\}} \geq \frac{\left\lfloor\frac{b}{a_{1}}\right\rfloor}{\left\lfloor\frac{b}{a_{1}}\right\rfloor+1}=\frac{1}{1+\frac{1}{\left\lfloor\frac{b}{a_{1}}\right\rfloor}} \\
& \text { Let }\left\lfloor\frac{b}{a_{1}}\right\rfloor=m \text {, then the result would be } \frac{1}{1+\frac{1}{m}} ; \text { so it is found as } \\
& \Delta \geq \frac{1}{1+\frac{1}{m}} \Rightarrow \lim _{m \rightarrow \infty} \frac{m}{m+1}=1
\end{aligned}
$$

It means that we obtain better results with the increase of the m value, however, guarantee value would be "1/2" in the worst case.

$$
\left(\frac{m}{m+1}\right)=\alpha \quad \Rightarrow \quad \alpha R \leq f \leq R
$$

Complementary Problem of IKP

For each x_{i}, we find

$$
n_{i}=\left\lfloor\frac{b}{a_{i}}\right\rfloor
$$

Here, n_{i} represents how many pieces we can take from $i^{\text {th }}$ variable at most. $B=\sum_{i \in J} n_{i} a_{i}, \quad \bar{b}=B-b, \quad \mathrm{y}_{i}=n_{i}-x_{i}$ and the complementary problem occurs as below:

$$
\begin{equation*}
\bar{R}=\min \left\{\sum_{j \in \bar{J}} p_{j} y_{j} \mid \sum_{j \in \bar{J}} a_{j} y_{j} \geq \bar{b}, y_{j} \in Z^{+} \cup\{0\}, y_{j} \leq n_{j}, j \in \bar{J}\right\} \tag{2}
\end{equation*}
$$

Notice that it is a bounded integer minimization problem. Without losing generality, let values a_{j} and $p_{j}, j \in \bar{J}$ be positive integers; besides, $\frac{p_{1}}{a_{1}} \leq \frac{p_{2}}{a_{2}} \leq \ldots \leq \frac{p_{n}}{a_{n}}$

Tmin Algorithm for Complementary Problem

A1) $k=1$ and $\bar{f}=0$;
A2) $y_{k}^{G}=\left\lceil\frac{\bar{b}}{a_{k}}\right\rceil$;
A3) If $y_{k}^{G}>n_{k}$, then $y_{k}^{G}=n_{k}, \bar{f}=\bar{f}+y_{k}^{G} p_{k}, \bar{b}=\bar{b}-y_{k}^{G} a_{k}$
else $\bar{f}=\bar{f}+y_{k}^{G} p_{k}$ and go to Step6;
A4) $k=k+1$;
A5) If $\bar{b}>0$ and $k \leq n$ then go to Step2;
A6) Print \bar{Y}^{G}, \bar{f};
A7) END.

Calculation of Guarantee Value of Tmin Algorithm

Let $s-1=\max \left\{k \mid \sum_{i=1}^{k} n_{i} a_{i}<\bar{b}\right\}$, then the result of the algorithm is given as

$$
y_{i}^{G}=n_{i}, \quad i=\overline{1, s-1}
$$

$$
y_{i}^{G}=0, \quad i=\overline{s+1, n}
$$

$$
\bar{f}=\sum_{i=1}^{s-1} n_{i} p_{i}+\left\lceil\frac{\overline{\bar{b}}}{a_{s}}\right\rceil p_{s}
$$

$$
y_{s}^{G}=\left\lceil\frac{\overline{\bar{b}}}{a_{s}}\right\rceil, \quad\left(\overline{\bar{b}}=\bar{b}-\sum_{i=1}^{s-1} n_{i} a_{i}\right)
$$

Notice that $\left\lceil\frac{\overline{\bar{b}}}{a_{s}}\right\rceil \leq n_{s}$.
If the problem was continuous, the solution would be $\tilde{\bar{R}}=\sum_{i=1}^{s-1} n_{i} p_{i}+\frac{\overline{\bar{b}}}{a_{s}} p_{s}$,
Furthermore, we know $\tilde{\bar{R}} \leq \bar{R} \leq \bar{f} \Rightarrow 2 \tilde{\bar{R}} \leq 2 \bar{R} \leq 2 \bar{f}$. Now, there are two cases we will observe:

1st case: $s>1$

$$
\begin{aligned}
a_{\max }=\max \left\{a_{j} \mid j=1, \ldots, n\right\} \\
\Delta=\frac{\bar{f}}{\bar{R}} \leq \frac{\bar{f}}{\tilde{\bar{R}}}=\frac{\sum_{i=1}^{s-1} n_{i} p_{i}+\left[\left.\frac{\overline{\bar{b}}}{a_{s}} \right\rvert\, p_{s}\right.}{\sum_{i=1}^{s-1} n_{i} p_{i}+\frac{\overline{\bar{b}}}{a_{s}} p_{s}}=\frac{\left(\sum_{i=1}^{s-1} n_{i} p_{i}+\frac{\overline{\bar{b}}}{a_{s}} p_{s}\right)+\left(\left[\frac{\overline{\bar{b}}}{a_{s}}\right] p_{s}-\frac{\overline{\bar{b}}}{a_{s}} p_{s}\right)}{\sum_{i=1}^{s-1} n_{i} p_{i}+\frac{\overline{\bar{b}}}{a_{s}} p_{s}} \\
=1+\frac{\left(\left[\frac{\overline{\bar{b}}}{a_{s}} \left\lvert\,-\frac{\overline{\bar{b}}}{a_{s}}\right.\right) p_{s}\right.}{\sum_{i=1}^{s-1} n_{i} p_{i}+\frac{\overline{\bar{b}}}{a_{s}} p_{s}} \leq 1+\frac{\left(\left[\frac{\overline{\bar{b}}}{a_{s}}\right]-\frac{\overline{\bar{b}}}{a_{s}}\right) p_{s}}{\sum_{i=1}^{s-1} \frac{b-a_{i}}{a_{i}} p_{i}} \leq 1+\frac{p_{s}}{\left(b-a_{i}\right) \sum_{i=1}^{s-1} \frac{p_{i}}{a_{i}}} \\
\leq 1+\frac{p_{s}}{\left(b-a_{\max }\right) \frac{p_{1}}{a_{1}} \sum_{i=1}^{s-1} 1} \leq 1+\frac{1}{\left(b-a_{\max }\right)(s-1)}
\end{aligned}
$$

2nd case: $s=1$
Notice that $\overline{\bar{b}}=\bar{b}$ and $\sum_{i=1}^{s-1} n_{i} p_{i}=0$

$$
\begin{aligned}
& \bar{f}=\sum_{i=1}^{s-1} n_{i} p_{i}+\left\lceil\frac{\overline{\bar{b}}}{a_{s}}\right\rceil p_{s}=\left\lceil\frac{\bar{b}}{a_{1}}\right\rceil p_{1} \quad \tilde{\bar{R}}=\frac{\bar{b}}{a_{1}} p_{1} \\
& \left\lceil\frac{\bar{b}}{a_{1}}\right\rceil=\left\lfloor\frac{\bar{b}}{a_{1}}\right\rfloor+1 \leq\left\lfloor\frac{\bar{b}}{a_{1}}\right\rfloor+\left\lfloor\frac{\bar{b}}{a_{1}}\right\rfloor \leq 2\left\lfloor\frac{\bar{b}}{a_{1}}\right\rfloor+2\left\{\frac{\bar{b}}{a_{1}}\right\} \\
& \bar{f}=\left\lceil\frac{\bar{b}}{a_{1}} \left\lvert\, p_{1} \leq\left(2\left\lfloor\frac{\bar{b}}{a_{1}}\right\rfloor+2\left\{\frac{\bar{b}}{a_{1}}\right\}\right) p_{1}=2 \tilde{\bar{R}} \leq 2 \bar{R}\right.\right.
\end{aligned}
$$

If looked at the results, guaratee value will be equavalent to "2" in the second case; besides, if denominator equals to 1 in the first case then the guarantee value will be the same. Otherwise, while s and $\left(b-a_{\max }\right.$) are going bigger, it results better.

Some Theorems

Theorem 1: $R+\bar{R}=P \quad\left(P=\sum_{i=1}^{n} n_{i} p_{i}\right)$
Theorem 2: $f+\bar{f}<P$

Improvoment of guarantee Value

We consider problem (2) for the solution of the problem (1). Let us apply Tmin algorithm for this problem and remark $\tilde{f}=P-\bar{f}$

Theorem 3: $R \geq \tilde{f} \geq \begin{cases}\alpha R, & \text { if } \quad \mu<\alpha /(2-\alpha) \\ (2 \mu /(1+\mu)) R, & \text { if } \quad \mu \geq \alpha /(2-\alpha)\end{cases}$ Here $\mu=\tilde{f} / P$,

Theorem 4: $\bar{R} \leq \bar{f} \leq \begin{cases}2 \bar{R}, & \text { if } \lambda>(2 \alpha-2) /(\alpha-2) \\ (\alpha \lambda /(\lambda+\alpha-1)) \bar{R}, & \text { if } \lambda \leq(2 \alpha-2) /(\alpha-2)\end{cases}$
Here $\lambda=\bar{f} / P$

Literature

1. Ausiello G., Cerscenzi P., Kann V., Marchetti-Spaccamela A. and Protasi M., Complexity and Approximation: Combinatorial Optimization Problems and their Approximability Properties, Springer, Berlin, (1999) 524 p.
2. Güntzer M. M. and Jungnickel D., Approximate minimization algorithms for the $0 / 1$ knapsack and subset-sum problem, Operations Research Letters, Ausburg, (2000), 26:55-66
3. Hochbaum D. S., Approximation Algorithms for NP-Hard Problems, PWS Publishing Boston, (1997), 596 p.
4. Nikitin A. I. ve Nuriyev U. G., On a method of the solution of the knapsack problem, Kibernetika, Baku, (1983), 2:108-110.
5. Nuriyev U. G., On the solution of the knapsack problem with guaranteed estimate, Problems of Computing Mathematics and Theoretical Cybernetics, Baku, (1986), 66-70.
6. Vazirani V. V., Approximation Algorithms, Springer, Berlin, (2001), 380 p.
