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In controlling numerous real-world processes, realization of partial variations in the 
values of the control actions is either associated with difficulties of realization or cannot in 
general be achieved. From the practical point of view, therefore, there is a need to investigate 
problems of optimal control in the class of given control actions which realization does not 
cause technical difficulties. In the present article nonlinear problems of optimal control of 
processes that can be described by systems of ordinary differential equations are investigated. In 
these problems the coefficients participating in the formula for the controls are parameters 
which must be optimized and, what is most important, constancy intervals of these coefficients 
must be optimized. 

A method of numerical determination of the optimal values of the coefficients 
participating in the formula for the controls and constancy intervals of these coefficients based 
on first-order finite-dimensional optimization methods and formulas for the gradient of a target 
functional with respect to the optimized parameters is proposed. 

We consider the problem of optimal control by objects described by systems of nonlinear 
differential equations. Suppose that the state of a controlled object is described by the following 
Cauchy problem: 

( ) ( ) ( ] ( ) 00,,0,,, xxTttuxftx =∈=& ,    (1) 

where  – is the phase state of the object; the control  

is determined by decomposition on the given functions 
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with unknown optimized coefficients on each half-interval [ )jj ττ ,1− , obtained by partitioning 

the segment  at [ ]T,0 ( )1−L  optimized points ,,..., L1, jj =τ  i.e. 
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and the admissible values of the control belong to some set U , in particular, to the following 
parallelepiped: 
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takes on its minimal value. It is assumed that the given functions , Φ,0f
( ) [ )jjjm tMmt τττϕ ,,,1, 11 −− ∈=−  and the vector function  together with the partial 

derivatives are continuous with respect to 

f
( )ux, . 

For numerical solving the problem (1)-(5) we use the scheme suggested in [1-3]. For 
this purpose we introduce on the segment [ ]T,0  the uniform lattice region 
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{ NThNiihtt ii }====Ω ,,...,0,: .     
Here  is a given natural number. Without any loss in generality, to simplify the 
computational formulas of the system (1) we will accomplish the approximation by means of 
the explicit Euler technique, and will approximate the integral takes part occurs in the 
expression of the functional (5) by the method of rectangles. As a result, we obtain the 
following finite-dimensional mathematical programming problem: 

N
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taking into account conditions (3), (4). Here ( ) ,1,0,,1,, −==−= NiMmt jim
ji

m τϕϕ  

1,0 −= Lj . 
From (7) it is evident that if the switching time jτ  of the control lies between the nodal 

points  and , the value of the control  will be approximated by a linear combination of 

the values of ∑  and . 
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To solve problem (6)-(8), that is, to determine the optimal values of the vectors  and C
τ , we will use numerical first-order finite-dimensional optimization methods, in particular, the 
iteration method of projection of the gradient of the functional in the space of optimized 
parameters ( )τ,C : 
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11 =−=++ kdCdIdCCdICPC kkkkkkkk ττταττ ,      (9) 

where  is the operator for projection of the vector )4(),3(P ( )τ,C  to an admissible region of 

parameters determined by the constraints (3) and (4), and ( )00 ,τC  is some specified initial 
approximation for the optimized parameters; the vectors 
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determine the gradient of the functional of problem (6)–(8), the formulas for the components of 
which will be obtained below; * is transposition sign. 

We introduce the following vectors of the impulse variables ([1]): 
NiEpdxdIp n

iii ,...,0,, =∈= .      
Here the derivative is understood as a total derivative, taking into account interdependence of 
the values of  from (6). Thus, considering (6), it follows that ,,...,0, Nixi =
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where E  is an -dimensional unit matrix. The system (11) will be called the adjoint system. n
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Let us suppose that the switching time jτ  lies between the nodal points  and , 

that is, 
1−jkt jkt

[ ),,1 jj kkj tt −∈τ  1,...,1 −= Lj . Then the components of the gradient 
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m  L,j =1 , are determined as follows: 
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and the partial derivatives ,1,1, 1 −−=∂∂ − jj
j

ms kkscu  MmLj ,1,,1 ==  are determined 
from (7): 
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 For the components of the gradient 1,1, −= LjddI jτ , we have 

( ) ( )
.

,,,,

1

111
*

1

111
0

1

1

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂

∂

∂
=

=
∂

∂

∂

∂
+

∂
∂

=
∂

∂
+

∂
∂

=

−

−−−

−

−−−−

−

−

j

j

jjj

j

jjjj

j

j

j

j

j

j

k
k

kkk

k

kkk

j

k

k
j

k

k

k

j
k

j

k

jj

p
u

tuxf

u

tuxfu
h

p
u

u

xIp
xI

d
dI

τ

τττττ
   (14) 

The partial derivatives Lju jk j
,1,1 =∂∂ − τ , are determined directly from (7): 
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Then from (14) and (15) we find  for 1,...,1 −= Lj , 
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Formulas (12) and (16) determine the components of the gradient of the functional (8) of 
problem (6)-(8). A realization of the iterative process (9) consists in the following stages: 

1) a solution of the approximate Catchy problem , is found from 

formulas (6), (7) for the current values of the vector 

NiEx n
i ,...,0, =∈

( ) 1)1( −+∈ MLk E,kC τ ; 
2) from formulas (13), (14) vectors of impulses  are determined in reverse order, 

beginning with  to ; 

n
i Ep ∈

Ni = 0=i
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3) from formulas (12), (16) the components of the vector of the gradient (8) are 
determined; 

4) the procedure (9) is accomplished with a choice of α  from the condition of one-
dimensional minimization of the functional (8) (in view of the “simplicity” of the admissible 
region of the parameters (3), (4), the operation of projection  does not represent any 

difficulty), and a new approximation 
)4(),3(P

( )11, ++ kkC τ  is determined. In the case when the optimality 
condition is not satisfied or when the iteration process halts, stages 1-4 are repeated. 

Remark. It is clear that the choice of the technique of the Euler method for the 
approximation of problem (1)-(5) is not of essential importance for the proposed approach. The 
formulas that have been obtained here may be easily extended to other techniques of 
discretization of the initial problem. 
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