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Many-branched applications to dynamic of cosmic apparatus, economy, ecology, 

quantum electronic, robot technique were stimulated interest to none-classic optimal control 
problems, where the trajectories of dynamic systems can be discontinuous, and controls include 
impulses – momentary influences on system cumulative (stroke) character  [1, 2].  

One of the major problems in the field of optimization of systems with impulsive 
controls is the problem of obtaining constructive conditions for optimality, including the 
specificity of this class of systems, and giving opportunity to use them in order to solve the 
problem numerically.   

The necessary conditions for optimality of the impulsive regimes in the maximum 
principle form for different kind of systems and the way of determining impulsive regimes as 
partial case of the generalized functions were obtained in [3-5]. But these formulas aren’t 
quietly for using in the numerical calculations. The constructive formulas allowing using the 
optimization methods of the first order were obtained in this work when the number of 
impulsive influences is given. 

An impulsive optimal control problem by the objects described by system of 
ordinary differential equations is considered. Particularly, let us consider the problem of 
minimization of the functional 
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Here  phase vector; ))(),...,(()( 1 txtxtx n= −⋅)(δ is a Dirac function, mappings 
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Here TLqq jj ,,,,,,,, 21 ααηξQ  and initial vector  is given.  0x

With purpose of applying finite-dimensional optimization methods of the first order for 
the determining of optimal vector , it will be obtained analytical formulas for the 
gradient of the functional (1): 

),( ** θq
( )),(),,()( θθ θ qIqgradJ Iu q ′′= . 

Let us consider the following Hamilton-Pontryagin function and adjoint system for the 
problem of (1)-(4): 
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where nEt ∈)(ψ . The increment of the functional (1) for admissible control  and 
 can be written in the following way [5]: 
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For the first, let us obtain the expression for 
ijdq

qdI ),( θ , Ljni ,1,,1 == . Let us write the 

functional increment in the following way:  
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And now let us get the expression for 
jd

qdI
θ
θ ),( , Lj ,1=   For this case we will use the 

next εδ -functions: 
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increment εθ =Δ . Then εδ -function will get the following increment: 
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Then for increment of functional on increment ( )0,....,,...,0),,0( ju θθθ Δ=ΔΔ=Δ  by using (7), 
we have:  
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By using the separating of the function )()( tbt ijiψ  in the Taylor rank around the point  t , we 
receive the following: 
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By noticing this in the formula of the increment of functional (7), dividing both part by jθΔ   
and converging to limit at 0→Δ jθ , 0→ε , we will achieve: 
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It can be shown that at the case of θε Δ>  and θε Δ<  expression for components of functional 

gradient 
jd

qdI
θ
θ ),( , Lj ,1=  same as (9).Thus, the next theorem is proved. 

Theorem: The components of the functional gradient on parameters of the control 
influences in the problem (1), (4) are determining by the formulas (8), (9).  

Remark: If an impulsive optimal control problem by the objects described by 
system of non-linear ordinary differential equations   
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then it can analogically to (8), (9)  be obtained formulas for capacity and time components of 
impulsive influences in the following form: 
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Where  is a solution of the adjoint system analogical to (6). nEt ∈)(ψ
By using the receiving formulas for functional gradient, let us yield the results of 

applying them in the next test problem. 
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The accurate optimal control for this problem is unknown. 
The gradient vector calculating by formulas (8), (9) at the arbitrary selected point 

),( θq =(6;0,7) is equal to: ( )),(),,()( θθ θ qIqIugradJ q ′′= =(-1,4794;-4,6961).  
The problem was numerically solved by using formulas (8), (9) with step . The 

results of numerical experiments by using the method of the projection of adjoint gradients for 
different initial values of control vector with optimization accuracy  

002.0=h

001,0=ε  are shown on the 
table 1. 

 
Table 1 
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The numerical results of the problem  

( ) 00 ,θq ( ) ** ,θq 0J  *J  The number 
of iter. 

(6;0.7) (8,000; 0,7779) 2,5639 1,0499 9 
(4;0.6) (8,000; 0,7799) 7,1852 1,0493 6 
(2;0.9) (7,959; 0,7839) 15,8539 1,0478 3 
(2;0.8) (8,000; 0,7799) 15,6761 1,0492 7 
(8;0.2) (7,968; 0,7779) 35,3643 1,0487 2 
(4;0.5) (8,000; 0,7819) 7,4929 1,0489 5 

 
The constructive analytical formulas for the gradient of the target functional of the 

considered problem (when the number of impulses is given) is obtained which allow using 
first order optimization methods for solving the optimal control problem.  

According to simplicity of realization of the impulsive control and their extensive 
using in technique, the suggested approach to constructing the strategy of control by the 
objects with concentrated parameters can find the wide application in the systems of 
control by those objects. 
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