LINEAR-QUADRATIC PROBLEM OF OPTIMAL CONTROL FOR VARIABLE STRUCTURE SYSTEMS

Kamil Mansimov ${ }^{1}$ and Alireza Yazdankhah ${ }^{2}$

${ }^{1}$ Baku State University, Baku, Azerbaijan, mansimovkamil@mail.ru
${ }^{2}$ Atatallah Kashani st. Shafaei Ali, № 3, Tehran, Iran, yazdankhah1@yahoo.co.uk
In the study is considered linear-quadratic problem of the optimal control for one system with variable structure.

Let us consider the problem of minimization of quadratic functional:

$$
\begin{gather*}
J(u, v)=\frac{1}{2} x^{\prime}\left(t_{1}\right) N_{1} x\left(t_{1}\right)+\frac{1}{2} \int_{t_{0}}^{t_{1}}\left[x^{\prime}(t) N_{2}(t) x(t)+u^{\prime}(t) N_{3}(t) u(t)\right] d t+ \tag{1}\\
+\frac{1}{2} y^{\prime}\left(t_{2}\right) M_{1} y\left(t_{2}\right)+\frac{1}{2} \int_{t_{1}}^{t_{2}}\left[y^{\prime}(t) M_{2}(t) y(t)+v^{\prime}(t) M_{3}(t) v(t)\right] d t
\end{gather*}
$$

at the restrictions

$$
\begin{align*}
& u(t) \in U \subset R^{r}, t \in\left[t_{0}, t_{1}\right], \\
& v(t) \in V \subset R^{q}, t \in\left[t_{1}, t_{2}\right], \tag{2}\\
& \dot{x}=A_{1}(t) x+B_{1}(t) u, t \in\left[t_{0}, t_{1}\right], \\
& x\left(t_{0}\right)=x_{0}, \tag{3}\\
& \dot{y}=A_{2}(t) y+B_{2}(t) v, t \in\left[t_{1}, t_{2}\right], \tag{4}\\
& y\left(t_{1}\right)=C x\left(t_{1}\right) .
\end{align*}
$$

Here it is assumed that $x(t)(y(t)) n(m)$-dimensional vector of phase variables, $t_{0}, t_{1}, t_{2}\left(t_{0}<t_{1}<t_{2}\right)$ are given, N_{1}, M_{1} are given constant matrixes of the corresponding dimension, $A_{i}(t), B_{i}(t), i=1,2, N_{i}(t), M_{i}(t), i=2,3$ are given continuous matrix functions of the corresponding dimension, C is given constant matrix, x_{0} is given constant vector, $u(t) \quad(v(t))$ is $r(q)$-dimensional sectionally continuous vector of the control actions, U, V are nonempty, bounded and open sets.

Let name pair $(u(t), v(t))$ which satisfies all the foregoing conditions as permissible control, and corresponding process name $(u(t), v(t), x(t), y(t))$ permissible process.

Considering $(u(t), v(t), x(t), y(t))$ fixed permissible process let us introduce functions of Hamilton-Pontryagin:

$$
\begin{aligned}
H_{1}\left(t, x, u, \psi_{1}\right) & =-\frac{1}{2}\left[x^{\prime} N_{2}(t) x+u^{\prime} N_{3}(t) u\right]+\psi_{1}^{\prime}\left[A_{1}(t) x+B_{1}(t) u\right], \\
H_{2}\left(t, y, v, \psi_{2}\right) & =-\frac{1}{2}\left[y^{\prime} M_{2}(t) y+v^{\prime} M_{3}(t) v\right]+\psi_{2}\left[A_{2}(t) y+B_{2}(t) v\right] .
\end{aligned}
$$

Here $\psi_{i}=\psi_{i}(t), \quad i=1,2$ are vector-functions of the corresponding dimensions, which are also solutions of the following system of linear-nonhomogeneous differential equations:

$$
\begin{align*}
& \dot{\psi}_{1}=-A_{1}^{\prime}(t) \psi_{1}+N_{2}(t) x(t), \quad t \in\left[t_{0}, t_{1}\right], \\
& \psi_{1}\left(t_{1}\right)=-N_{2} x\left(t_{1}\right)+C \psi_{2}\left(t_{1}\right), \tag{5}\\
& \dot{\psi}_{2}=-A_{2}^{\prime}(t) \psi_{2}+M_{2}(t) y(t), \quad t \in\left[t_{0}, t_{1}\right], \\
& \psi_{2}\left(t_{2}\right)=-M_{1} y\left(t_{2}\right) . \tag{6}
\end{align*}
$$

Suppose that

$$
\begin{align*}
& N_{1} \geq 0, N_{2} \geq 0, N_{3}(t)>0, \tag{7}\\
& M_{1} \geq 0, M_{2} \geq 0, M_{3}(t)>0 .
\end{align*}
$$

Taking in account suppositions (7) it is proved that (for example, using scheme discussed in study [1]) for the optimality of the permissible control $(u(t), v(t))$ is necessary and sufficient fulfilment of the conditions

$$
\begin{array}{ll}
\frac{\partial H_{1}\left(t, x(t), u(t), \psi_{1}(t)\right)}{\partial u}=0, & t \in\left[t_{0}, t_{1}\right] \\
\frac{\partial H_{2}\left(t, y(t), v(t), \psi_{2}(t)\right)}{\partial v}=0, & t \in\left[t_{1}, t_{2}\right] . \tag{8}
\end{array}
$$

Considering expression for $H_{i}, i=1,2$ relations (8) are written as:

$$
\begin{aligned}
& B_{1}^{\prime}(t) \psi_{1}(t)-N_{3}(t) u(t)=0 \\
& B_{2}^{\prime}(t) \psi_{2}(t)-M_{3}(t) v(t)=0
\end{aligned}
$$

Relations (8) result that control $(u(t), v(t))$ is defined by the following formulas:

$$
\left.\begin{array}{l}
u(t)=N_{3}^{-1}(t) B_{1}^{\prime}(t) \psi_{1}(t) \tag{9}\\
v(t)=M_{3}^{-1}(t) B_{2}^{\prime}(t) \psi_{2}(t)
\end{array}\right\}
$$

Substituting expression (9) in (3) we obtain:

$$
\begin{align*}
& \dot{x}(t)=A_{1}(t) x(t)+B_{1}(t) N_{3}^{-1}(t) B_{1}^{\prime}(t) \psi_{1}(t) \tag{10}\\
& x\left(t_{0}\right)=x_{0} \\
& \dot{y}(t)=A_{2}(t) y(t)+B_{2}(t) M_{3}^{-1}(t) B_{2}^{\prime}(t) \psi_{2}(t) \\
& y\left(t_{1}\right)=C x\left(t_{1}\right) \\
& \quad \dot{\psi}_{1}=-A_{1}^{\prime}(t) \psi_{1}+N_{2}(t) x(t) \\
& \quad \psi_{1}\left(t_{1}\right)=-N_{2} x\left(t_{1}\right)+C \psi_{2}\left(t_{1}\right) \tag{11}\\
& \quad \dot{\psi}_{2}=-A_{2}^{\prime}(t) \psi_{2}+M_{2}(t) y(t) \\
& \quad \psi_{2}\left(t_{2}\right)=-M_{1} y\left(t_{2}\right)
\end{align*}
$$

Supposing that

$$
\begin{aligned}
& D_{1}(t)=B_{1}(t) N_{3}^{-1}(t) B_{1}^{\prime}(t) \\
& D_{2}(t)=B_{2}(t) M_{3}^{-1}(t) B_{2}^{\prime}(t)
\end{aligned}
$$

the problem (10) can be written as:

$$
\begin{align*}
& \dot{x}(t)=A_{1}(t) x(t)+D_{1}(t) \psi_{1}(t) \\
& \dot{y}(t)=A_{2}(t) y(t)+D_{2}(t) \psi_{2}(t) \tag{12}\\
& x\left(t_{0}\right)=x_{0}, \quad y(t)=C x(t)
\end{align*}
$$

Then we will seek $\psi_{i}=\psi_{i}(t), \quad i=1,2$ in the following form:

$$
\begin{align*}
& \psi_{1}(t)=-P_{1}(t) x(t) \tag{13}\\
& \psi_{2}(t)=-P_{2}(t) y(t) \tag{14}
\end{align*}
$$

where $P_{i}(t), i=1,2$ are still unknown symmetrical matrixes.
Differentiating both parts of (13) and (14) with respect to t we obtain:

$$
\begin{align*}
\dot{\psi}_{1}(t) & =-\dot{P}_{1}(t) x(t)-P_{1}(t) \dot{x}(t) \tag{15}\\
\dot{\psi}_{2}(t) & =-\dot{P}_{2}(t) y(t)-P_{2}(t) \dot{y}(t) \tag{16}
\end{align*}
$$

Considering (11), (12) following relations can be obtained from (15),(16):

$$
\begin{aligned}
& -A_{1}{ }^{\prime}(t) \psi_{1}(t)+N_{2}(t) x(t)=-\dot{P}(t) x(t)-P_{1}(t)\left[A_{1}(t) x(t)+D_{1}(t) \psi_{1}(t)\right], \\
& -A_{2}{ }^{\prime}(t) \psi_{2}(t)-M_{2}(t) y(t)=-\dot{P}_{2}(t) y(t)-P_{2}(t)\left[A_{2}(t) y(t)+D_{2}(t) \psi_{2}(t)\right] \text {, } \\
& {\left[P_{1}(t) D_{1}(t)-A_{1}{ }^{\prime}(t)\right] \psi_{1}(t)=-\dot{P}_{1}(t) x(t)-P_{1}(t) A_{1}(t) x(t)-N_{2}(t) x(t),} \\
& {\left[P_{2}(t) D_{2}(t)-A_{2}{ }^{\prime}(t)\right] \psi_{2}(t)=-\dot{P}_{2}(t) x(t)-P_{2}(t) A_{2}(t) y(t)-M_{2}(t) y(t),} \\
& \left\{\left[A_{1}{ }^{\prime}(t)-P_{1}(t) D_{1}(t)\right] P_{1}(t) x(t)=-\left[\dot{P}_{1}(t)+P_{1}(t) A_{1}(t)+N_{2}(t)\right] x(t),\right. \\
& \left\{\left[A_{2}{ }^{\prime}(t)-P_{2}(t) D_{2}(t)\right] P_{2}(t) y(t)=-\left[\dot{P}_{2}(t)+P_{2}(t) A_{2}(t)+M_{2}(t)\right] y(t),\right. \\
& \left\{\left[A_{1}{ }^{\prime}(t) P_{1}(t)-P_{1}(t) D_{1}(t) P_{1}(t)+\dot{P}_{1}(t)+P_{1}(t) A_{1}(t)+N_{2}(t)\right] x(t)=0,\right. \\
& \left\{\left[A_{2}{ }^{\prime}(t) P_{2}(t)-P_{2}(t) D_{2}(t) P_{2}(t)+\dot{P}_{2}(t)+P_{2}(t) A_{2}(t)+M_{2}(t)\right] y(t)=0 .\right.
\end{aligned}
$$

Last expression will be fulfilled for all $x(t)$ and $y(t)$ if

$$
\begin{align*}
& \dot{P}_{1}(t)=-A_{1}{ }^{\prime}(t) P_{1}(t)-P_{1}(t) A_{1}(t)-N_{2}(t)+P_{1}(t) D_{1}(t) P_{1}(t) \tag{17}\\
& \dot{P}_{2}(t)=-A_{2}^{\prime}(t) P_{2}(t)-P_{2}(t) A_{2}(t)-M_{2}(t)+P_{2}(t) D_{2}(t) P_{2}(t) \tag{18}
\end{align*}
$$

Let us find initial conditions. It is clear that

$$
\begin{aligned}
\psi_{1}\left(t_{1}\right) & =-P_{1}\left(t_{1}\right) x\left(t_{1}\right) \\
\psi_{2}\left(t_{2}\right) & =-P_{2}\left(t_{2}\right) y\left(t_{2}\right)
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\left\{\begin{array}{l}
-N_{1} x\left(t_{1}\right)+C \psi_{2}\left(t_{1}\right)=-P_{1}\left(t_{1}\right) x\left(t_{1}\right) \\
-N_{2} y\left(t_{2}\right)=-P_{2}\left(t_{2}\right) y\left(t_{2}\right)
\end{array}\right. \\
-N_{1} x\left(t_{1}\right)-C P_{2}\left(t_{1}\right) y\left(t_{1}\right)=-P_{1}\left(t_{1}\right) x\left(t_{1}\right), \\
-N_{1} x\left(t_{1}\right)-C P_{2}\left(t_{1}\right) C x\left(t_{1}\right)=-P_{1}\left(t_{1}\right) x\left(t_{1}\right),
\end{gathered}
$$

This implies that

$$
\left\{\begin{array}{l}
P_{1}\left(t_{1}\right)=N_{1}+C P_{2}\left(t_{1}\right) C, \tag{19}\\
P_{2}\left(t_{2}\right)=N_{2}
\end{array}\right.
$$

Let us name equations (17), (18) with initial conditions (19) system of matrix differential equations Rickaty in the observed problem. If problems (17)-(20) are solved then control $(u(t), v(t))$ can be expressed by formula:

$$
\begin{aligned}
& u(t)=-N_{3}^{-1}(t) B_{1}^{\prime}(t) P_{1}(t) x(t) \\
& v(t)=-M_{3}^{-1}(t) B_{2}^{\prime}(t) P_{2}(t) y(t)
\end{aligned}
$$

Literature

1. E.B.Lee, L.Marcus. Foundation of optimal control theory. New-York, London, Sydney. (1967), 576 p.
2. Afanasiev V.N., Kolmanovsky V.B., Nosov V.R. Mathematical theory building systems automatic control, M.: High school, 1998, 574 p. (in Russian)
