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Is considered the following problem: 
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 Where , , , (0>jc 0>ja 0>jd Nj ,1= ) and  are integer. 0>b
 

Problem (1) – (4) enters into the class of “intractable” problems and the elaboration of 
newer and more flexible methods has not only theoretical, but as well practical sense.  

For the solution of this problem was elaborated algorithm, which includes the following 
stages: 

1) The construction of approximate solution and finding upper and lower bounds of  the 
optimum; 

2) The determination of  optimal value of the part of  unknowns by using method [1]; 
3) The construction of equivalent problem with essentially narrow range of admissible 

solutions in comparison with the initial problem; 
4) Solution of obtained problem on principle of recurring correlations of   dynamic 

programming. 
Let’s mark out that elaborated method is the generalization of works [2] and [3] for the 

case of   integer-valued variables ),1,1( njd j => . 
Computing experiments have shown efficiency of the elaborated method. 
Let  ,*f f  and f  be optimal value of functional (1) – (4), lower and upper estimations 

accordingly. Without reducing commonness, it is supposed that unknowns have been regulated 
in the following sequence: 
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Then the optimal solution ),...,,( 21 nxxxX =  of the continuous problem (1) – (3) is 

constructed analytically: 
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Here number of unknown   is determined from the conditions      k
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Let’s mark out that if   then the solution Nkn ≤< X    is the solution of problem (1) – 
(4).  

Analogously, obeying to the integer-value constraint it is easily constructed some 
approximate solutions ),...,,( 21 nxxxX =  of the problem (1) - (4). Thus,  
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It’s obvious that fff ≤≤ * . 
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The following theorems have been proven 
 

THEOREM 1. If for certain integer positive value p is satisfied condition  
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Where  and number  is fixed. )(ijdp ≤ )(ij
 

THEOREM 2. Let  ,
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)(ij
ji s
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−
=  Ni ,1= . Then   coordinates of the optimal 

solution of  the mixed-integer problem (1)-(4) is situated in the following interval: 
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Where [  stands for integer part of number . ]z z

It’s obvious that if for some i   Ni ,1= , 1)( <ijh ,  then optimal value )(
*

)( ijij xx = .  
 

Hereby, by applying theorem 2 can be defined optimal values of unknowns of problem            
(1) – (4) and can be restricted interval of variation of variables. Considering this in problem          
(1) – (4) is obtained equivalent problem with less number of unknowns and with less length of 
intervals of variation of variables. Therefore, solution of received problem by the use of            
well–known methods (for example, by method of dynamic programming or by branch and 
bounds method) demands appreciably less quantity of operations. 
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