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On the filtered probability space 0( , , ( ) , )n NF F P≤ ≤Ω  consider the stochastic process of 
discrete time   
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, is a Gaussian martingale with 

quadratic characteristic  We describe evolution of risky asset by this scheme. nM 〉〈
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where Nnnn F ≤≤0),(ψ  some stochastic sequence. It is clear, that   is  measurable and if ψ
nZ nF

,} ∞<nexp{E ψ  then  is Nnnn FZ ≤≤0),( P  martingale and represents the density process. 
   Consider measure 
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which is equivalent to . P
   If ),( nn Fψψ =  satisfies  

),.(],/}[exp{]/}[exp{ 11 saPFEFME nnnnn −=Δ+ −− ψψ      (1) 
then  is a martingale measure for , i.e. is equivalent to ψQ S ψQ P  and  is  
martingale.  
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      Let nnn MbMa Δ+Δ= 2ψ , where a  and b  are some constants. In this 
case the condition (1) has form  
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 So, the condition (3) is fulfilled if  
2
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−=b  and for any constant  the class of 

martingale measures for  is defined by density process 
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 Let’s consider the class of martingale measures  aQ )( Ra∈ with density (2), i.e.  
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 Our aim is to find the constant  and corresponding probability measure  which 
minimizes the relative entropy. 

*a *
aQ

 Recall, that the relative entropy of probability measure Q  with respect to probability 
measure  is defined as P
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So we have to find constant  and corresponding measure  with density (3) for which *a *
aQ

.min),( * →PQI a  
 

The following theorem is true    
 
Theorem. Let ,0,,...,1},exp{ 00 >== SNnMSS nn

M〈
where  is the 

gaussian martingale with quadratic charasteristic  In class of martingale 

measures with densities defined by (3) the minimal relative entropy martingale measure  has 
the density 
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