MARTINGALE MEASURES FOR THE GEOMETRICAL GAUSSIAN MARTINGALE

Omar Glonti¹, Zaza Khechinashvili²

Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia ¹omglo@yahoo.com, ²khechinashvili@mail.ru

On the filtered probability space $(\Omega, F, (F)_{0 \le n \le N}, P)$ consider the stochastic process of discrete time

$$S_n = S_0 \exp\{M_n\}, n = 1, ..., N$$

where $S_0 > 0$ is deterministic, $(M_n, F_n)_{0 \le n \le N}$, $M_0 = 0$, is a Gaussian martingale with quadratic characteristic $\langle M \rangle_n = EM_n^2$. We describe evolution of risky asset by this scheme. Define

$$Z_n^{\psi} = Z_{n-1}^{\psi} \frac{\exp\{\psi_n\}}{E[\exp\{\psi_n\}/F_{n-1}]}, \ Z_0 = 1,$$

where $(\psi_n, F_n)_{0 \le n \le N}$ some stochastic sequence. It is clear, that Z_n^{ψ} is F_n measurable and if $E \exp{\{\psi_n\}} < \infty$, then $(Z_n, F_n)_{0 \le n \le N}$ is P martingale and represents the density process. Consider measure

$$Q_{\psi}(A) = \int_{A} Z_{N}^{\psi}(\omega) dP(\omega), A \in F,$$

which is equivalent to P.

If
$$\psi = (\psi_n, F_n)$$
 satisfies

$$E[\exp\{\psi_{n} + \Delta M_{n}\} / F_{n-1}] = E[\exp\{\psi_{n}\} / F_{n-1}], (P - a.s),$$
(1)

then Q_{ψ} is a martingale measure for S, i.e. Q_{ψ} is equivalent to P and S is (F_n, Q_{ψ}) martingale.

Let $\psi_n = a \Delta M_n^2 + b \Delta M_n$, where *a* and *b* are some constants. In this case the condition (1) has form

$$E \exp\{a\Delta M_n^2 + (b+1)\Delta M\} = E \exp\{a\Delta M_n^2 + b\Delta M\}$$

and $b = -\frac{1}{2}$.

So, the condition (3) is fulfilled if $b = -\frac{1}{2}$ and for any constant *a* the class of martingale measures for *S* is defined by density process

$$Z_{n} = Z_{n-1} \frac{\exp\{a(\Delta M_{n})^{2} - \frac{\Delta M_{n}}{2}\}}{E \exp\{a(\Delta M_{n})^{2} - \frac{\Delta M_{n}}{2}\}} = \prod_{k=1}^{n} \frac{\exp\{a(\Delta M_{k})^{2} - \frac{\Delta M_{k}}{2}\}}{E \exp\{a(\Delta M_{k})^{2} - \frac{\Delta M_{k}}{2}\}},$$
(2)

Let's consider the class of martingale measures Q^a ($a \in R$) with density (2), i.e.

$$\frac{dQ_a}{dP} = Z_N = \prod_{k=1}^{N} \frac{\exp\{a(\Delta M_k)^2 - \frac{\Delta M_k}{2}\}}{E\exp\{a(\Delta M_k)^2 - \frac{\Delta M_k}{2}\}}.$$
(3)

Our aim is to find the constant a^* and corresponding probability measure Q_a^* which minimizes the relative entropy.

Recall, that the relative entropy of probability measure Q with respect to probability measure P is defined as

$$I(Q, P) = \begin{cases} E_P[\frac{dQ}{dP}\ln\frac{dQ}{dP}], & ifQ << P, \\ \infty, otherwise. \end{cases}$$

So we have to find constant a^* and corresponding measure Q_a^* with density (3) for which $I(Q_a^*, P) \to \min$.

The following theorem is true

Theorem. Let $S_n = S_0 \exp\{M_n\}, n = 1, ..., N, S_0 > 0$, where $(M_n, F_n)_{0 \le n \le N}, M_0 = 0$ is the gaussian martingale with quadratic charasteristic $\langle M \rangle_n = EM_n^2$. In class of martingale measures with densities defined by (3) the minimal relative entropy martingale measure Q_a^* has the density

$$\frac{dQ_a^*}{dP} = \prod_{k=1}^{N} \frac{\exp\{\frac{1-\sqrt{3}}{4}(\Delta M_k)^2 - \frac{\Delta M_k}{2}\}}{E\exp\{\frac{1-\sqrt{3}}{4}(\Delta M_k)^2 - \frac{\Delta M_k}{2}\}}$$

References

- 1. Fritelli M. The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance, 10, pp. 39-52, 2000.
- 2. Goll T., Ruschendorf L. Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch. 5, 557-581, 2001.
- Shiryaev A.N. Essentials of Stochastic Finance. I. Facts, Models. II. Theory, (1999). (in Russian)

The work is supported by Georgian National Foundation Grant N. 303/07.