ON THE PRICING OF A EUROPEAN OPTION

Petre Babilua¹ and Besarion Dochviri²

¹I. Javakhishvili Tbilisi State University, Tbilisi, Georgia, *petre_babilua@yahoo.com* ²I. Javakhishvili Tbilisi State University, Tbilisi, Georgia, *b.dochviri@math.sci.tsu.ge*

1. We consider the financial (B, S)-market consisting only of two assets: a bank account (bonds) $B = (B_n)$ and stocks (shares) $S = (S_n)$, n = 0, 1, ..., N. According to the well-known Cox-Ross-Rubinstein discrete model, the time-dependent behavior (evolution) of the variables B_n and S_n is defined by the recurrent equalities

$$B_n = (1+r)B_{n-1}, \quad B_0 > 0, \tag{1}$$

$$S_n = (1 + \rho_n) S_{n-1}, \quad S_0 > 0.$$
 (2)

It is assumed that the family $\{P\}$ of probability measures *P* is defined on the measurable space (Ω, F, F_n) , n = 0, 1, ..., N by filtration [1].

In equalities (1), (2), r > 0 is an interest rate, and ρ_n for any probability measure $P \in \mathsf{P}$ is a sequence of independent, identically distributed random variables taking only two values *a* and *b*; also, $P(\rho_n = b) = p$, $P(\rho_n = a) = 1 - p$, -1 < a < r < b [1]-[3].

Let us now assume that there is some investor who has the initial capital $X_0 = x > 0$ and wants to get the capital f_N in the future by using the capability of the (B, S)-market. In that case, we deal with the so-called investment problem.

2. Let the price of one bond B_0 and the price of one stock is S_0 at the initial moment of time. Suppose that at the moment of time n = 0 the investor purchased β_0 quantity of bonds and γ_0 quantity of stocks. Therefore the investor's initial capital can be written in the form

$$X_{0} = X_{0}^{\pi} = \beta_{0}B_{0} + \gamma_{0}S_{0}, \qquad (3)$$

where $\pi = \pi_0 = (\beta_0, \gamma_0)$ is said to form the investor's portfolio or strategy at the moment of time n = 0.

Let us now assume that there is a sequence of F_{n-1} -measurable functions $g = (g_n)$, n = 0, 1, ..., N, $g_0 = 0$. Suppose that before the arrival of the moment of time n = 1, the investor transformed his portfolio $\pi_0 = (\beta_0, \gamma_0)$ to the new portfolio $\pi_1 = (\beta_1, \gamma_1)$ in a manner such that the equality

$$X_0^{\pi} = \beta_1 B_0 + \gamma_1 S_0 + g_1 \tag{4}$$

is satisfied. Thus if $g_1 \ge 0$, then the initial capital X_0^{π} diminishes by the value g_1 ; if $g_1 \le 0$, then X_0^{π} increases by the value g_1 .

After the arrival of the moment of time n = 1, the investor will have the capital

$$X_{1}^{\pi} = \beta_{1}B_{1} + \gamma_{1}S_{1}, \qquad (5)$$

where B_1 and S_1 are the new prices of one bond and one stock, respectively, at the moment of time n = 1.

Analogously, for any moments of time n-1 and n we have

$$X_{n-1}^{\pi} = \beta_{n-1} B_{n-1} + \gamma_{n-1} S_{n-1}, \qquad (6)$$

 $X_{n-1}^{\pi} = \beta_n B_{n-1} + \gamma_n S_{n-1} + g_n, \qquad (7)$

$$X_n^{\pi} = \beta_n B_n + \gamma_n S_n.$$
⁸

The strategy $\pi = (\pi_n) = (\beta_n, \gamma_n)$ is called a (x, f, N)-hedge if

$$X_0^{\pi} = X_0 = x$$
$$X_n^{\pi} \ge f_n \, .$$

where $f = f_N = f_N(S_0, S_1, ..., S_N)$ is some payoff function.

If we have the equality $X_N^{\pi} = f_N$, then π is called a minimal hedge.

For $X_0 = x > 0$ and $f = f_N$ we denote by $\Pi(x, f, N)$ the set of all (x, f, N)-hedges.

Now let us define a standard European call option. This is a derivative (secondary) security with the payoff function

$$f = f_N = (S_N - K)^+ = \max(S_N - K, 0).$$
(9)

The owner of this option enjoys the right to buy a stock at a price K at a certain moment of time N. If $S_N > K$, then the owner of the option will buy a stock at a price K, sell it at once at a price S_N and have a gain

$$f_N = S_N - K \, .$$

His gain will actually be equal to

$$f_N = S_N - K - C_N,$$

where C_N is the so-called fair (rational) price of a standard European call option. If $S_N \ge K$, then the owner of the option will not carry out the operation with his option and his loss will be equal to C_N .

The problem of the investor (option seller) consists in the following: using the fair price of the option

$$C_N = \inf \{x > 0 \colon \Pi(x, f, N) \neq \emptyset\}$$

it is required to construct a minimal hedge $\pi_n^* = (\beta_n^*, \gamma_n^*)$. In other words, the investor's capital must be equal to f_N at a moment of time *N*.

The basic problems of the pricing of a European option can be formulated as follows: 1) defining a fair price C_N ;

- 2) constructing a minimal hedge $\pi_n^* = (\beta_n^*, \gamma_n^*);$
- 3) constructing the investor's capital process $X_n^{\pi^*}$ for the strategy π_n^* .

3. Let us consider the financial (B, S)-market (1), (2) and nonself-financed strategies π_n . Assume that the sequence of F_{n-1} -measurable functions $g = (g_n)$ defined by the equality

$$g_n = c_1 \beta_n B_{n-1} + c_2 \gamma_n S_{n-1} \tag{10}$$

is given, where the constants c_1 and c_2 are such that $0 < c_1 < 1$, $0 < c_2 < 1$.

Theorem 3. Assume that the financial market (1), (2) is considered and the sequence of F_{n-1} -measurable functions $g = (g_n)$ is given by means of (10). Then

1) the fair price C_N of a European type option with the execution at the moment of time N and the payoff function $f_N = f_N(S_0, S_1, ..., S_N)$ is defined by the formula

$$C_{N} = E^{*} \left[\left(\frac{1 - c_{1}}{1 + r} \right)^{N} \cdot f_{N} \right],$$

where E^* is the averaging with respect to a measure $P^* \in \mathsf{P}$ such that $P^*(\rho_n = b) = p^*$, $P^*(\rho_n = a) = 1 - p^*$, $0 < p^* < 1$, $p^* = \frac{r + c_1(1 + a) - c_2(1 + r) - a}{(b - a)(1 - c_1)}$;

2) there exists a minimal (x, f, N)-hedge $\pi^* = (\pi_n^*) = (\beta_n^*, \gamma_n^*)$, n = 0, 1, ..., N, whose F_{n-1} -measurable components are defined by the formulas

$$\beta_n^* = \frac{X_{n-1}^* - \gamma_n^* S_{n-1} (1 - c_2)}{B_{n-1} (1 - c_1)}$$
$$\gamma_n^* = \frac{\alpha_n^* B_n}{S_{n-1} (1 - c_1)},$$

where $\alpha_k^* = \alpha_k^*(\rho_1, ..., \rho_{k-1})$, $k \ge 2$, $\alpha_1^* = \text{const}$, are the definite F_{n-1} -measurable functions;

3) the capital $X^{\pi^*} = (X_n^{\pi^*})$, n = 0, 1, ..., N, corresponding to the hedge $\pi^* = (\pi_n^*)$ is given by the formula

$$X_n^{\pi^*} = E^* \left[\left(\frac{1-c_1}{1+r} \right)^{N-n} \cdot f_N \big| \mathsf{F}_n \right].$$

References

- 1. B. N. Shiryaev, Fundamental principles of stochastic financial mathematics.(Russian) *Fakti, Modeli, Teoriya*, v. I-II, *Fazis, Moscow*, 1998.
- 2. T. Abuladze, B. Dochviri, On the pricing of European options. *Bull. Georgian Acad. Sci.* 169 (2004), No. 1, 13-15.
- 3. T. Abuladze, P. Babilua, B. Dochviri, M. Shashiashvili, On the modeling of the European option pricing theory. *Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics* 21 (2006), No. 3, 5-8.