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0. In the theory of random processes special place take the so-called martingale represent-
ation theorems which, for example, implies the representation of the Wiener and Poisson functi-
onals in the form of stochastic integrals. In the 80th of the past century, it turned out (see 
Harison and Pliska (1981)) that the martingale representation theorems (along with the 
Girsanov's measure change theorem) play an important role in the modern financial 
mathematics. In particular, using the integrand of the stochastic integral appearing in the 
integral representation, one can construct hedging strategies in the European options of different 
type.  

According to the well-known result obtained by Clark (1970), if  is a -measurable 

random variable with , then there exists the adapted process 

F
(

Tℑ

([2
2EF < ∞ )],0) Ω×∈ TLt ωϕ , 

such that the integral representation  

0

( )
T

tF EF dwϕ ω= + ∫ t    ( P -a.s.) 

holds. However, this result says nothing on finding the process ( )tϕ ω  explicitly. In this direct-
ion we are familiar with one sufficiently general result, the so-called Ocone-Clark's formula by 
which for the Wiener functionals: ( ) [ ]( )w w

t t tE D Fϕ ω ω
F

= ℑ , where  is the stochastic 

derivative (so-called the Malliavin’s derivative) of the functional . Another distinct method of 
finding an integrand 

w
tD F

( )tϕ ω  belongs to Shyryaev, Yor (2003), when the functional ξ  is of 
"maximal" type. With the functional they linked the associated Lewy's martingale and used the 
generalized Ito's formula. According to the this result, if maxt u t

S
≤ uw= , then the following 

integral representation is holds:  
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= + −Φ
−∫ t , 

where is the standard normal distribution function. ( )Φ ⋅
One should note that application of the Ocone-Clark formula needs as a rule, on the one 

hand, essential efforts, and, on the other hand, in the cases if the functional  has no the 
stochastic derivative, its application is impossible. Our approach within the classical Ito's 
calucus allows one to construct 

F

( )tϕ ω  explicitly by using both the standard  theory and the 
theories of weighted Sobolev spaces, if the functional  has no stochastic derivative (see 
Jaoshvili, Purtukhia (2005)). It is known that the events indicator has, in general, no stochastic 
derivative: more exactly, the indicator function of 

2L
F

w
TA∈ℑ

1/ 2

 belongs to  (where  denotes 
the space of square integrable Wiener functionals having the first order stochastic derivative) if 
and only if  equal to zero or one. Consequently, one cannot apply the Ocone-Clark 
formula for the indicator  ( ), whereas our approach allows one to write 
the following representation:  
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where  is the function of a normal distribution with parameters 0  and T .  0, ( )T t−Φ ⋅ t−
The subsequent generalization of the Ocone-Clark formula to the so-called normal marti-

ngales (the martingale is said to be normal, if tMM
t
=, ) is due to Ma, Protter, Martin 

(1998). According to this formula, if , then the Ocone-Haussmann-Clark's 
representation 

MDF 1,2∈

0

( ) ( )
T

p M
t tF E F D F dM= + ∫  

is valid; here  denotes the space of quadratically integrable functionals having the first 

order stochastic derivative, and  is the predictable projection of the stochastic 

derivative  of the functional . But, in this case (exactly, when the quadratic variation 
 is not deterministic), unlike the Wiener's one (see, example from Ma, Protter, Martin 

(1998)), it is impossible to define in a generally adopted manner an operator of stochastic 
differentiation to obtain the structure of Sobolev spaces, which allows one to construct explicitly 
the stochastic derivative operator in many cases. In reality, the example from Ma, Protter, 
Martin (1998) shows that two definitions, Sobolev space and chaos expansion, are compatible if 
and only if  is deterministic. Therefore in the martingale case the space  
(1 ) cannot be defined in the usual way -- i.e., by closing the class of smooth functionals 
with respect to the corresponding norm. In work of Purtukhia (2003) the space  

(1 ) is proposed for a class of normal martingales and the integral representation 
formula of Ocone-Haussmann- Clark is established for functionals from this space.  
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Since, the Compensated Poisson process belongs to a class of normal martingales --
tMM

t
=, , but its quadratic variation is not deterministic -- [ , ]t tM M M= + t

!

, 
consequently, the Ocone-Haussmann-Clark’s formula makes it impossible to construct 
explicitly the operator of the stochastic derivative of the functionals of the Compensated 
Poisson process, saying nothing on the construction of its predictable projection. Our approach 
within the framework of nonanticipative stochastic calculus of semimartingales allows one to 
construct explicitly the expression for the integrand of the stochastic integral in the theorem of 
martingale representation for square integrable functionals of the Compensated Poisson process, 
and to derive the formula allowing one to construct explicitly predictable projections of their 
stochastic derivatives (see Jaoshvili, Purtukhia (2007)).  

1. Let  be a filtered probability space satisfying the usual conditions. ))(,,,( 0 ∞≤≤ℑΡℑΩ tt

Assume that the standard Poisson process  is given on it , 

 and that 
tN ( ) /t n

tN n e t n−Ρ = =

,...2,1,0=n tℑ  is generated by  (N N
t tℑ = ℑ ), Tℑ = ℑ . Denote . tNM tt −=:

Let  and ,...}2,1,0{=+Z ,...},,{ 321 PPPP = -- be the Poisson distribution: 
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 ( , if ) 

and define the Poisson-Sharle’s polynomials: 
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It is wellknown from the course of Functional Analysis that the sequence 0)}({ ≥nn xπ  
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Let ( , ) : / !T xx T e T xρ −=  and denote by  the functional space on )),(;(: 22 TxZLLT ρ+=
+Z  with the finite norm 

2
)(: 2/1

,2 LT
Tgg ρ= . 

Proposition 1.1. The space  is a Banach space with basis {TL2 ( , )nx x Tρ , }. 1n ≥

Proposition 1.2. If , then the stochastic integral   ( )F T⋅ − ∈ TL2
0

[ ( ) | ]
T

T tE F M dM−ℑ∫ t

is well defined.  
Let us denote ( ) : ( 1) ( )x f x f x f x∇ = + − , ( ( ) : ( )

Tx T x xF M F x =∇ = ∇ M

L

).  

Theorem 1.1.  If  and for some number 2( ) TF ⋅ ∈ 10 << α : /
2( ) T

xF T L α∇ ⋅− ∈ , then 

the stochastic integral below is well defined and the following representation is valid:  

0

( ) [ ( )] [ ( ) | ]
T

T T x T tF M E F M E F M dM−= + ∇ ℑ∫ t      ( P -a.s.).                  (1.1) 

Theorem 1.2. In the conditions of the Theorem 1.1 the following relation holds:  

[ ( )] [ ( ) |p M
t T x TD F M E F M ]t−= ∇ ℑ          ( dsdP ⊗ -a.s.),            (1.2) 

where  denotes the predictable projection of the stochastic derivative (with 

respect to the Compensated Poisson process)  of the functional . 

[ (p M
t TD F M )]

)T(M
tD F M ( )TF M

Example 2.1. The random variable  has the following stochastic integral representa-
tion:  

2
TM

2 2

0

[ ] (1 2 )
T

T T t tM E M M dM−= + +∫     ( -a.s.) P

(note that in the Wiener process cases the Ocone-Clark’s formula gives us that:  

2 2

0

[ ] 2
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T T tw E w w dw= + ∫ t       ( -a.s.)). P

2.  Fix now 0 S T≤ ≤ ≤ ∞  and let us denote   
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x y x
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−
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−
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Denote by  the functional space on ,
2 2: ( ; ( , , , )S TL L Z Z x y S Tρ+ += × ) Z Z+ × +  with the 

finite norm 
2

1/ 2
,
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g g S Tρ=
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Proposition 2.1. The space  is a Banach space with basis {,
2
S TL ( , , , )n mx y x y S Tρ , 

}. , 1n m ≥
For any function of two variables ( , )g ⋅ ⋅  introduce the designation: 

2 ( , ) ( 1, 1) ( , )g x y g x y g x y∇ = + + − . 
It is not difficult to see that 

[ ( , )] [ ( ,x y y xg x y g x y∇ ∇ =∇ ∇ )]   
and  

2 ( , ) [ ( , )] ( , ) ( , )x y x yg x y g x y g x y g x y∇ = ∇ ∇ +∇ +∇ . 
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Let us denote 
2

[0, ] [0, ]( , ) [ ( , )] ( ) ( )t S T x y S T S Tg M M g M M I t I t∇ = ∇ ∇ +  

[0, ] [0, ]( , ) ( ) ( , ) (x S T S y S T Tg M M I t g M M I t+∇ +∇ ) . 
It is clear that for any function of two variables ( , )g ⋅ ⋅  there exists the function ( , )h ⋅ ⋅ , 

such that . Let us denote ( , ) ( , )g x y h x y x= − ( , ) (g x= − , ( ))g x y S y x T S− − − . 

Theorem 2.1. If  and for some number ,
2( , ) S TF L⋅ ⋅ ∈ 10 << α : / , /

2[ ( , )] S T
x y F L α α∇ ∇ ⋅ ⋅ ∈ , 

then the stochastic integral below is well defined and the following stochastic integral rep-

resentation is valid: 

2

0

( , ) [ ( , )] [ ( , ) | ]
T

S T S T t S T tF M M E F M M E F M M dM−= + ∇ ℑ∫ t      ( P -a.s.).         (2.1) 

Theorem 2.2. In the conditions of the Theorem 2.1 the following relation holds:  
2[ ( , )] [ ( , ) |p M

t S T t S TD F M M E F M M ]t−= ∇ ℑ          ( dsdP ⊗ -a.s.),         (2.2) 

where  denotes the predictable projection of the stochastic derivative (with 

respect to the Compensated Poisson process)  of the functional .
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