THE PARAMETERS COMPUTER OF THE TWO-MEASURING ELECTRO MAGNETIC SENSOR OF TRANSFERENCES

Firudin Mammadov ${ }^{1}$, Rena Asadova ${ }^{2}$
Institute of Cybernetics of ANAS, Baku, Azerbaijan
${ }^{1}$ MamedovFirudin@rambler.ru, ${ }^{2}$ RenaAsadova2007@rambler.ru

The authors of the article created two-measured electromagnetic sensor for simultaneous dimension of linear and angular transferences with the alone sensor. The unfold of the sensor is shown on the picture 1 . The present sensor contains the cylindrical magnet conductor 1 ; inside of the magnet conductor allocates the ferromagnetic rotor 2 , which has form of thin-walled demi-cylinder, the unfold of which is represented as a rectangle.

In the longitudinals grooves 3 of the magnet conductor 1 have sections 4 and 5 of the primary winding excitation and sections 6 and 7 of the second winding for dimension of linear transferences, along the longitudinal axle of the transformation. In diametrical allocating grooves on the internal face of the magnet conductor 1 allocates sections 8 and 9 of primary winding excitation and sections 10 and 11 of the second winding for dimension of angular transferences β relativity of the second winding for dimension of angular transferences β relativity of longitudinal axle of the rotor 2 revolving of the transformation. The sections of the second winding for dimension of linear and angular transferences are connected by means of the differential scheme. The sections 4,5 and 8,9 of the primary winding are connected connects in each pair sequentially- compliance and are fed from the strain source of alternating current.

The inductive transformation of linears and angular transferences works in the following form.

In the initial position of the rotor 2 , when it allocates symmetrically of relative sections 411 of primary and the second winding for dimension linear and angular transferences in the sections 6,7 and 10,11 , difference of the electro moving power is equally to zero.

During a turn of the rotor 2 around axle on the corner β, for example, by direction of an hour pointer is enlarged area of a sections recover 8 and 10 by means of the rectangling ferromagnet's rotor 2 and suitable is lessen area of a recover of the sections 9 and 11 of primary and the second winding for dimension of angular transferences. Therefore in the section 10, the electro moving power value is enlarged, and in the section 11 is lessen and supporting a signal $\Delta \mathrm{E}_{\mathrm{l}}$, proportioning transferences of angular $\Delta \mathrm{E}_{\mathrm{y}}$ of the rotor 2 on the one of outsides of the transformation.

Electric magnet fields $\Phi_{y \delta}^{l}$ of each winding system made by each system of winding are fase-paralled and are closed up as on picture 2.

On the basics of the picture 2, thickens of middle projection of the goof depending on a depth of electromagnet field in the magnet conductor solid. During research is definited that a depth of electromagnet field in steel is option 3 mm , when alike 50 Gz .

During the middle projection of the goof in a two-side electric-magnet field, then it thickness can be approximately 5, 6 mm .

And so in the middle projection the electromagnet field can be described by means of serials differential in the expression of second sequence for linear transference chain, where H is a symbol as H_{y}. The thinness of the middle of the projection, where is marked the point O . During $X=+d$ and $A_{1}=A_{2}=A$ the last expression is written in the view:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{y}}^{1}=2 \mathrm{Achkx} \tag{1}
\end{equation*}
$$

During $X=d ; \mathrm{H}_{\mathrm{y}}^{1}=\mathrm{H}_{56 \mathrm{~m}}^{1}=\mathrm{H}_{5}$ and to definite A and write the expression of the magnet which is closed up over the middle projection with $H_{y}{ }^{l}$ have:

$$
\begin{equation*}
\Phi_{y}^{l}=\frac{2 \mu \mu_{0} H_{56 m}^{l} \alpha_{0}}{k} \text { thkd } \tag{2}
\end{equation*}
$$

The magnet conductor is directed to the conductors $\Phi_{1}{ }^{l}$ and $\Phi_{2}{ }^{l}$. For finding these sells the coordinate system is replaced to the point O_{l}, which is the outside phase of a moving magnet contact.

In this field face is described as the same by means of the serial usual differential expression.

$$
\begin{equation*}
H_{x 1}^{l}=B_{1} e^{k y_{1}}+B_{2} e^{-k y_{1}} \tag{3}
\end{equation*}
$$

The field can not increased at the end in the envisaging section of the moving magnets conductor, therefore $\mathrm{B}=0$ and the expression (3) is writen in the view:

$$
\begin{equation*}
H_{x 1}^{l}=B_{2} e^{-k y} \tag{4}
\end{equation*}
$$

From the decision of the elecrtomagnet field expression will be

$$
\begin{equation*}
H_{x 1}=H_{12 m}^{l} e^{-k y_{1}} \tag{5}
\end{equation*}
$$

The magnet conductor $\Phi_{1}{ }^{1}$ with a appliance (3) has the view:

$$
\begin{equation*}
\Phi_{1}^{l}=\mu \mu_{0} H_{12 m} \alpha\left(1-e^{-k \Delta_{1}}\right) 1 / k \tag{6}
\end{equation*}
$$

The magnet conductor $\Phi_{2}{ }^{l}$ is defined of the same:

$$
\begin{equation*}
\Phi_{2}^{l}=\mu \mu_{0} H_{1^{\prime} 2^{\prime} m} \frac{\alpha_{0}}{k}\left(1-e^{-k \Delta_{1}}\right) \tag{7}
\end{equation*}
$$

The magnets $\Phi_{1}{ }^{l}$ is allocates in the right point of aerial expanse of the transducer, and $\Phi_{2}{ }^{l}$ in the left point of aerial expanse. The left and right points are taken relatively of middles projections of the grooves.

Using the principle of the magnets sell continuous for elementary magnet small pipe, where (during that) one section is on the areas $X=0$, and second section is on the middle of the right aerial expanse, well get the following expression:

$$
\begin{align*}
H_{X_{1}=0}^{l} & =\frac{B_{0}}{a_{0}} \frac{H_{y \delta}^{l}}{\mu} \frac{d x_{1}}{d y_{1}} \tag{8}\\
\frac{d^{3} x_{1}}{d_{1} y^{3}} & =k^{2} \frac{d x_{1}}{d y_{1}} \tag{9}
\end{align*}
$$

After definition the integrating constants will get:

$$
\begin{equation*}
X_{1}=\alpha+\frac{b_{0}}{\operatorname{Shk} \Delta_{1}} \operatorname{shk} y_{1} \tag{10}
\end{equation*}
$$

From that expression will get:

$$
\begin{equation*}
\frac{d x_{1}}{d y_{1}}=\frac{b_{0} k}{\operatorname{Shk} \Delta_{1}} \operatorname{ch} k y_{1} \tag{11}
\end{equation*}
$$

Appreciate (11) in (8), and to use (4) and to express qiperbolic cosines by means of the presentqs functions and after some transformations will get the following:

$$
\begin{equation*}
H_{y_{1} \delta_{1}}^{l}=\frac{2 s h k \Delta_{1} \alpha_{0}}{k b_{0}^{2}} \mu \frac{H_{12 m}^{l} e^{-2 k y_{1}}}{1+e^{-2 k y_{1}}} \tag{12}
\end{equation*}
$$

By means of (10) is definite Shky and Chky and write their as presents functions and use for $e^{2 k y_{1}}$ the approaching expression

$$
\sqrt{1+\frac{1}{q^{2}}}=1+\frac{1}{2 q^{2}}
$$

And after some calculating will get the following

$$
\begin{equation*}
H_{y_{1} \delta_{l}}^{l}=\frac{2 \alpha_{0} \operatorname{shk\Delta }}{k b_{0}^{2}} \mu H_{12 m}^{l} \frac{1}{1+\left\{\left(X_{1}-\alpha\right) m_{0}\right\}^{2}} \tag{13}
\end{equation*}
$$

With use (13) will find the magnet conductor, of passing over magnet expanse, which write in the view:

$$
\begin{equation*}
\Phi_{y_{1} \delta}=\mu \mu_{0} H_{12 b}^{l} \frac{\alpha_{0}^{2}}{k_{m} R b_{0}} \operatorname{arctg}\left\{2 m_{0}\left(b_{0}-\alpha+x\right)\right\} \tag{14}
\end{equation*}
$$

The magnet conductor in the left side of the winding is definite of the same method. During dimension of the liners transference moving magnet contact is getting transference by axis and therefore recluse of the winding system 2 is enlarge and the winding system 2 is lessen. Therefore the expression (14) for the magnet conductor of passing across the winding and write in the view:

$$
\begin{equation*}
\Phi_{H_{1} \delta}=\mu \mu_{0} \frac{\left(\alpha_{0}+Z\right)^{2}}{k b_{0}} H_{12 m}^{l} \operatorname{arctg} \frac{4 m_{0}\left(b_{0}-\alpha\right)}{1-4 m_{0}^{2}\left\{\left(b_{0}-\alpha\right)^{2}-X^{2}\right\}} \tag{15}
\end{equation*}
$$

And magnet conductors $\Phi_{y_{1} \delta}$, of passing across 2,2' have the view:

Pic.1.The two functional electromagnet sensor in a unfold

Pict. 2. The electromagnet field round a sensor

$$
\begin{equation*}
\Phi_{y_{1} \delta}=\mu \mu_{0} \frac{\left(\alpha_{0}-Z\right)^{2}}{k b_{0}} H_{12 m}^{l} \operatorname{arctg} \frac{4 m_{0}\left(b_{0}-\alpha\right)}{1-4 m_{0}^{2}\left\{\left(b_{0}-\alpha\right)^{2}-Z^{2}\right\}} \tag{16}
\end{equation*}
$$

The systems of dimension the winding 2 and 2 ' are connected by differential scheme, therefore inducting the Electro moving power in these windings will be:

$$
\begin{equation*}
\Delta E_{l}=-j W_{2 l} \omega \mu \mu_{0} \frac{H_{12 m}^{l}}{k b_{0}} \alpha_{0} Z \operatorname{arctg} \frac{4 m_{0}\left(b_{0}-\alpha\right)}{1-4 m_{0}^{2}\left\{\left(b_{0}-\alpha\right)^{2}-X^{2}\right\}} \tag{17}
\end{equation*}
$$

E is proportioning transference of moving magnet contact by the exit Z. By means of the a for e said Principe we find magnet conductor of passing the 6 and 7 in the chain of angular transference, which writes as

$$
\begin{equation*}
\Phi_{y x}^{y}=\mu \mu_{0} \frac{\left(b_{0}+X\right)^{2}}{k x_{0}} H_{12 m}^{y} \operatorname{arctg} \frac{4 m_{0}\left(\alpha_{0}-\alpha\right)}{1-4 m_{0}^{2}\left\{\left(\alpha_{0}-\alpha\right)^{2}-Z^{2}\right\}} \tag{18}
\end{equation*}
$$

Electro motive force of inducting in the clutch's of dimension the winding systems 6 and 7 are connected between thenselves by the differential scheme and therefore

$$
\begin{equation*}
\Delta E_{y}=-j W_{2 y} \omega \mu \mu_{0} \frac{b_{0}}{k \alpha_{0}} H_{12 m} \operatorname{arctg} \frac{4 m_{0}\left(\alpha_{0}-\alpha\right)}{1-4 m_{0}^{2}\left\{\left(\alpha_{0}-\alpha\right)^{2}-Z^{2}\right\}} \tag{19}
\end{equation*}
$$

where $X=\beta R_{n}, R_{n-}$ is the external radius of the moving magnet conductor; β - isthe angular of a turn. Therefore ΔE_{y} is directly proportioning turn angular of the moving magnet conductor.

From (15) and (18) is followed that between dimensions chains of linear and angular transferences has a functioning link.

During a perform a condition $1-m_{0}^{2}\left\{\alpha_{0^{-}} \alpha\right\}^{2} \gg 4 m_{0}{ }^{2} Z^{2}$ can get a minimal mutual influence between dimensions chains.

As shown (17) and (20) ΔE_{l} and ΔE_{y} values can be written if the values $H_{12 m}{ }^{l}$ and $H_{12 m}{ }^{y}$ are well known. Using the status of common current for $1,2,3 \ldots$ n counters (pict.2) and Principe of the magnet conductor continuous finds tensions and to determine to the expressions (17) and (19) will get the Electro moving power formal in each exit of dimensions chains, which writes in the view:

$$
\begin{align*}
\Delta E_{l}= & -j \omega W_{2 l} \frac{2 \mu \mu_{0} \alpha_{0} Z}{k b_{0}} \frac{I_{l} W_{l}}{\left\{1+\alpha_{2}\right\} 2 \alpha+\left\{n_{0} \mu m_{1}\right\} \delta+\left\{\frac{n_{0}}{\mu}+n_{1}\right\} n} \times \\
& \times \operatorname{arctg} \frac{4 m_{0}\left\{b_{0}-\alpha\right\}}{1-4 m_{0}^{2}\left\{\left(b_{0}-\alpha\right)^{2}-X^{2}\right\}} \tag{20}\\
\Delta E_{y}= & -j \omega W_{2 y} \frac{2 \mu \mu_{0} b_{0} X}{k \alpha_{0}} \frac{I_{y} W_{y}}{\left\{1+\alpha_{2}\right\} 2 \alpha+\left\{n_{0} \mu m_{1}\right\} \delta+\left\{\frac{n_{0}}{\mu}+n_{1}\right\} n} \times \\
& \times \operatorname{arctg} \frac{4 m_{0}\left\{\alpha_{0}-\alpha\right\}}{1-4 m_{0}^{2}\left\{\left(\alpha_{0}-\alpha\right)^{2}-Z^{2}\right\}} \tag{21}
\end{align*}
$$

Geometrical dimensions of the magnet conductor received by the formula (20), (21) can compensate inter influence among dimension chains.

References

1. Asadova R.Sh., Mamedov F.I., Asadova K.F. "Inductive transformer of linear and angular transference", Patent of the Azerbaijan Republic, 2008, 005, Baku, 2008.
2. Mamedov F.I.,Mamedov J.F., Asadova R.Sh. Analytic investigation of optimal parameters of two-functional electromagnet transducers with continuous magnet conductor. Works of II International Symposium "Problems of mathematic modeling, controlling and information technologies in oil-gas industry", News of National Academy Of Sciences Of Baku, 21-26 September,1998, pp.101-103
3. Mamedov F.I., Asadova R.Sh., Sattarov V.K., Mamedov J.F. "Two -functional inductive transducer of linear and angular transferences. Patent of the Azerbaijan Republic, 990049, Baku, Printed in B.I., 1998.
