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1. Introduction 

With increasing competition in the fast pacing market, multiple-operation forging processes 
have become popular in practice by considering their high throughput, high precision and high agility. 
However, monitoring and diagnosis of such processes is still a challenging research issue. 
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(a)                                   (b) 

Fig. 1 (a) A forging process with five operations;  (b) sensor mounting on a forging machine 

As an example, Fig. 1(a) shows a typical forging process with five operations, and Fig. 1(b) 
shows four strain gage sensors mounted on four uprights of a forging machine, which measure the 
aggregated forces exerted on all dies. These tonnage sensors provide rich information about product 
quality and process conditions. The inherent variation of these tonnage signals reflects the natural 
process variations, such as randomness of lubrication, die temperature and material uniformity, etc. 
However, the application of tonnage monitoring in forging processes is still very limited. In most 
industrial practice, simple statistical process control methods are used for process monitoring. For 
example, the maximum and the average of a cycle of signals are the most commonly used statistics 
[1, 2]. A shortcoming of those methods is that a large amount of profile information contained in 
tonnage signals is not fully utilized. As a result, the monitoring system based on these simple statistics 
often suffers a high false alarm rate or a high missing detection rate for different faulty conditions. 
Moreover, most progressive/transfer forging processes usually consist of some operations that 
generate small tonnage forces hidden in overall aggregated tonnage signal profiles, such as piercing 
and trimming operations. These weak force operations are usually very difficult to be monitored. 

The objective of this paper is to develop an effective monitoring method through automatic 
feature extraction and sequential classification of continuous production data. The proposed 
methodology is presented in Section 2 and illustrated by a real world example of a forging process 
in Section 3. Finally concluding remarks are given in Section 4. 

2. Methodology Development 
Considering the data complexity of tonnage signals especially those operations generating 

weak force signals, it is hard to classify different faulty operation conditions through one classifier. 
In this paper, a new sequential feature selection and classification decision rule is developed to 
enhance the detection sensitivity and robustness. The proposed analysis procedure is shown in  

Fig. 2, where sequential step-by-step classification is used for each working condition 
classification, that is, only one working condition will be separated from others at one step. 

lπ
α denotes the probability of data in class l to be misclassified to all other class k, (k≠l) using the 
selected feature subset by step j. 
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Fig. 2: Framework for sequential feature selection and classification algorithm 

2.1 Feature selection and classifier design 
Let be the probability density function associated with one of the g group’s tonnage data 

denoted as
)(ykf

kπ , . Here the selected classification features are wavelet coefficients y, 
which can be univariate or multivariate. In this study, discrete wavelet transform is applied to the 
decomposed individual station signals [3].  DB4 [4] is selected as the wavelet basis and decomposition 
level of 7 is used.  Both detail and approximation coefficients at each level will be evaluated. 

g,,1K=k

Let  denotes the prior probability of group( )πkP πk , gk ,,1K= . Under the criterion of the 
minimum expected misclassification errors [5], y is classified as class πm , if 

( ) ( ) ( ) ( )π > πy ym m k kP f P f  for all , k ≠m k .              (1) 
Under the normal distribution assumption, we will classify y  as πm  if 
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As shown in  
Fig. 2 the classifier is designed with the first effort of using one optimal feature that is selected 

with the minimal expected classification error. If its classification performance is not satisfied, the 
feature dimension will be increased until the minimal expected classification error or other stopping 
criteria is satisfied.  

2.2 Analysis of misclassification error 
Fig. 3 shows the classification procedures and the resultant sample spaces after classification 

steps. At the beginning, the whole space consisting of samples under all conditions is denoted as 0Ω . 
Assume the data set under working condition k is denoted as kπ , gk ,,1K= .  At each 
step 1,2,..., 1= −j, j g , the group that will be identified is denoted by , e.g. if group l is 
identified at step j, we have , 

)( jC
ljC =)( 1,...,1 −= gj . For completeness, let  denote the 

remaining class after g-1 steps. Let  denote the remaining unclassified sample space at step j. 
Considering the possible classification errors, the remaining samples in 

)(gC
jΩ

jΩ may consist of a small 
percentage of samples of the previously identified groups, and large percentage of other unidentified 
group samples. Let j

iω denote the samples of iπ  left in jΩ , that is, . As 

shown in 

}, gK,2,1,{ ij
i == ωjΩ

Fig. 3(b), at step j , Ω j-1  will be divided into two subspaces: one is the identified sample 
space R j , all of which will be labeled as group l at step j, the other one is the remaining sample 
spaceΩ j , . φ=Ω∩ jjR
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(a)                               (b) 
Fig. 3: (a) Classifier training procedures;    (b) resultant sample spaces at step j 

Furthermore, the classification errors will be analyzed as follows: at the (j-1)-th step, the 
remaining samples of group i in will be ,1−Ω j 1−j

iω gi ,,2 ,1 K= . Let  denote the conditional 

probability of classifying 

j
iP

1−ω j
i  to the identified sample space jR at step j, 1,...,1 −= gj : 

}|Pr{ 1−∈= j
i

jj
i RxP ω ,           (2)  

where . Therefore, a confusion matrix  can be constructed to evaluate the 
classifier performance after all classification steps. Let  denote the probability of samples in class 
k to be classified as class l, which is identified at step j, i.e. 

gi ,,2,1 K= ggM ×ℜ∈

klM
jC l=)( . Following the definition, we 

have   
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Therefore, the total misclassification probability for gll ,...,1 , =π after all classification steps can 
be defined as: 
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where 
lπ

α is the total probability of the given class l to be misclassified into all other classes. From 

equation (3), we can see that 
lπ

α are affected by the steps up to step j, where classification errors are 

propagated as chain effect. In order to obtain optimal classification features for group lπ  
identification, the smallest misclassification error are used as a criterion for optimal feature selection 
at each step, which ensures lπ  is correctly classified and unidentified group samples are mainly 
remained in the remaining samples. 

3. Case Study 
In this paper, the training data set consists of one group of 307 signal samples under the full 

production condition and 5 groups of signals under the different missing part production, each of 
which consists of 69 samples. Fig. 4 shows the total tonnage signal profiles under different conditions. 
In the plot, Group i denotes signals with missing part at Station i. 

The wavelet features selected for all the classification steps and the corresponding 
misclassification probabilities of the sequential classifier developed previously are shown in Table 
1 and Table 2 respectively. From these tables, it is clearly shown that our methodology works well.  
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Fig. 4: Tonnage signals under the full operation and five missing part conditions

   
  Table 1: Selected wavelet coefficients at each 

step (s denotes scale level, d denotes detail 
level) 

Table 2: Total misclassification probabilities 
for each group (%)  

(group 6 denotes full operation data) 1st 
Coefficient 

2nd 
Coefficient Step Group 

Level Index Level Index
1 2 7(s) 10   
2 3 4(s) 52   
3 1 5(s) 14   
4 5 5(s) 15 4(s) 25 
5 4 7(d) 8 6(d) 14 

Classified 
Group ( l ) 1 2 3 4 5 6 

lπ
α  0 0 0 0.0084 0 0.0021

(The value less than 0.001 is treated as 0) 
 

 
 

4. Conclusion 
A new method is developed for monitoring of multiple-operation forging processes. In this 

paper, wavelets based sequential feature selection and classification procedure is proposed to 
minimize the misclassification probabilities among different classes. The corresponding 
classification error assessment method is also derived. A real-world forging process is used to 
demonstrate the analysis procedures and illustrate the effectiveness of the proposed methodology.   
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