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 The given talk is result of joint scientific researches led by Prof. Dr. Jutta Kunz from 
University Oldenburg, thanking support by the Volkswagenstiftung [1-5]. We present new 
classical solutions of Einstein-Yang-Mills-Higgs (EYMH) theory, representing gravitating 
sphaleron-antisphaleron pair, chain and vortex ring solutions. In these static axially symmetric 
solutions, the Higgs field vanishes on isolated points on the symmetry axis, or on rings centered 
around the symmetry axis. We compare these solutions to gravitating monopole-antimonopole 
systems, associating monopole-antimonopole pairs with sphalerons. 
 Here we consider the effect of gravity on the axially symmetric multisphalerons, and the 
sphaleron-antisphaleron pairs, chains and vortex rings. We characterize these solutions by two 
integers,  and . The Klinkhamer-Manton sphaleron [6] has , while the 
multisphalerons, representing superpositions of n  sphalerons, have  

m n 1m n= =
1, 1m n= > . Sphaleron-

antisphaleron pairs are obtained for 2, 2m n 1,= = , and chains for , while 
vortex rings arise for . At the same time additional branches of solutions arise, 
which connect to the generalized Bartnik-McKinnon (BM) solutions [7]. 

2,m n> 1,2=
1, 2m n> >

We consider  Einstein-Yang-Mills-Higgs theory with action (2)SU
2
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with curvature scalar R ,  field strength tensor                               
 gauge potential , and covariant derivative 

of the Higgs  in the fundamental representation                               
where  and e  denote the gravitational and gauge coupling constants, 

respectively,
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λ  denotes the strength of the Higgs self-interaction and v  the vacuum expectation 
value of the Higgs field. The action (1) is invariant under local gauge transformations 

, 

(2SU )

U , .iV UV U
eμ μ→ + U Uμ∂ →U+ + Φ Φ  The gauge symmetry is spontaneously broken  

due to the non-vanishing vacuum expectation value of the Higgs field 
0

,
12

v ⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
 leading 

to the vector and scalar boson masses 
1
2W HM e M v,v 2 .λ= =  Reexpressing the anomaly 

term in terms of the Chern-Simons current               
2
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π
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yields for the fermion charge of a sphaleron solution (in a suitable gauge)   To 

obtain gravitating static axially symmetric solutions, we employ isotropic coordinates. In terms 
of the spherical coordinates 

3 0 .FQ d rK= ∫

,r θ  and ϕ  the isotropic metric reads 
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where the metric functions ,f h  and  are functions of the coordinates  and l r θ , only. The z -
axis ( 0,θ π= ) represents the symmetry axis. Regularity on this axis requires 0, 0,| |h l .θ π θ π= ==  

We take a purely magnetic gauge field, 0V = , and parametrize the gauge potential and the 
Higgs field by the Ansatz 
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where              
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n and are integers, and m ,x yτ τ and zτ  denote the Pauli matrices. The two integers  and m  

determine the fermion number of the solutions,  

n

(1 ( 1) ) .
4

m

F
nQ − −

=  For vanishing gravity and 

 the Ansatz yields the Klinkhamer-Manton sphaleron[6]. For  or , the 
functions 

1=m n= 1n > 1m >
1 4,..., , ,H H 1Φ and depend on  and 2Φ r θ , only. These axially symmetric solutions 

represent gravitating multisphaleron ( 1,m n 2= > ), sphaleron-antisphaleron pair 
( ), chain ( ), and vortex ring ( ) configurations as well as 
mixed configurations. Let us now introduce the dimensionless coordinate 

2,= 1n =m 2,m n> 1= 1, 2m n> >
x and the 

dimensionless coupling constant α  , 4
4
ex r

G
Gvα α= π=

π
  . The limit 0α →  can be 

approached in two different ways: 1. G , while the Higgs vacuum expectation value v  
remains finite (flat-space limit), and 2. , while Newton's constant G remains finite. 
These limits are then associated with different branches of solutions. The dimensionless mass 

0
→

→
v 0

M  of the solutions is obtained from the asymptotic expansion of the metric function f ,                              

2limx xM x2 2f1
2

μ
α α→∞= ∂ =  .   

Let us first briefly recall the new static axially symmetric solutions of Weinberg-Salam 
theory (in the limit of vanishing Weinberg angle), found recently. We here restrict the 
discussion to the case of vanishing Higgs mass. The axially symmetric solutions are 
characterized by two integers,  and . We have investigated gravitating sphalerons, 
multisphalerons and sphaleron-antisphaleron systems, which are static and axially symmetric, 
and characterized by two integers,  and n . Single sphalerons are obtained for , 
multisphalerons for  and , and sphaleron-antisphaleron systems for . Like the 
electroweak sphaleron these new solutions are unstable, corresponding to saddle points. 

m

m
1>

n

1m n= =
11m = n m >

In the presence of gravity, from each of these flat space solutions, a branch of 
gravitating solutions emerges and evolves smoothly with increasing gravitational coupling 
constant α up to a maximal value maxα . There it merges with a second branch, higher in 
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energy, which extends backwards to 0α = . In the limit, the Higgs vacuum expectation value 
vanishes, and the limiting solutions correspond to pure EYM solutions (after rescaling).  

For larger values of the Higgs mass, the flat space solutions are no longer uniquely 
specified by the integers  and . Instead bifurcations appear, giving rise to further branches 
and types of configurations. As for the monopole-antimonopole systems, we therefore expect a 
plethora of gravitating solutions at large scalar coupling. Furthermore, for very large values of 
the Higgs mass also bisphalerons or `deformed' sphalerons are present, which do not exhibit 
parity reflection symmetry. 

m n

Comparing these gravitating sphaleron, multisphaleron and sphaleron-antisphaleron 
solutions, based on a doublet Higgs field, with the monopole-antimonopole solutions, obtained 
with a triplet Higgs field, we find precisely the same pattern of branches of solutions, when we 
compare sphalerons and sphaleron-antisphaleron systems characterized by m  and , with 
monopole-antimonopole systems characterized by  and . Interestingly, in the case , 
the scaled mass of both types of solutions even almost coincides. 

n
n2m n 4=

Monopole-antimonopole systems can rotate, when they carry no magnetic charge. It 
therefore appears interesting to consider also rotating sphaleron-antisphaleron systems. 
Moreover, monopole-antimonopole systems can be endowed with a black hole at their center, as 
shown explicitly already for the monopole-antimonopole pair [2, 8]. Sphaleron-antisphaleron 
systems with black holes are thus expected to exist as well. 

 
Figure 1: Scaled mass /μ α  versus coupling constant α for the single sphaleron ( )  
and multisphaleron ( m n ) solutions; for comparison the mass of the monopole-
antimonopole pair ( ) and vortex ring (

1, 1m n= =
1,

2,m n
2,...,= =

1,2= =
5

2, 3,5m n= = ) solutions is also shown. 

 
Figure 2: Scaled mass /μ α  versus coupling constant α  for single sphaleron ( ), 
sphaleron-antisphaleron pair (

1, 1m n= =
2,m n ), and chain ( 3, 1m n= = ) solutions; for 1= =
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comparison the mass of the monopole-antimonopole pair ( 2, 1m n= = ), and chain 
( ), ( ) solutions is also shown. 4, 1m n= = 6, 1m n= =
 

 
/μ αFigure 3: Scaled mass  versus coupling constant  α  for single sphaleron (  

and sphaleron-antisphaleron vortex ring (
1, 4m n= =

2, 4m n= = ) solutions;  for comparison the mass of 
monopole-antimonopole ( ) and monopole-antimonopole ( ) vortex 
ring solutions is also shown. 

2, 4m n= = 4,m = 4n =
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