SOME APPROXIMATIONS FORMULAS FOR CHARACTERISTICS OF TESTS WITH LINEAR AND CURVED STOPPING BOUNDARIES

Asaf Hajiyev¹, Fada Rahimov²

¹Institute of Cybernetics of ANAS, Baku, Azerbaijan, *asaf@baku-az.net* ²Baku State Universitety, Baku, Azerbaijan, *ragimovf@rambler.ru*

The ordinary sequential probability ratio test is defined by the crossing of linear boundaries by random walk. The linear boundaries a rise from sequential probability ratio tests of simple hypotheses against simple alternatives. For problems involving several parameters or composite hypotheses we'll consider curved stopping boundaries, which have a complicated structure and so their investigations meet some difficulties [1,2].

The asymptotic formulas for approximation of a significance level, power and expected sample size for tests with linear and curved stopping boundaries will be discussed in this paper and it will be compared with results of [3].

In [3] the following boundary problem was investigated. Let ξ_n , $n \ge 1$ be a sequence of independent and identically distributed random variable with finite mean value $V = E\xi_1$ and it is assumed that the Borel function $\Delta(x)$, $x \in (-\infty, \infty)$ is given. Additionally assume

$$S_{n} = \sum_{k=1}^{n} \xi_{k}, \ \overline{S}_{n} = \frac{1}{n} S_{n}, \ T_{n} = n \Delta(\overline{S}_{n}), \ \tau_{a} = \inf \{n \ge 1 : T_{n} \ge f_{a}(n)\},$$

where $f_a(t)$, a > 0, t > 0 is a some family of nonlinear boundaries and $\inf \{\emptyset\} = \infty$.

Note that the series of first passage time in theory of boundary crossing problems for random walks have the form τ_a . For example, if $\Delta(x) \equiv x$, then we obtain the following first passage time

$$t_a = \inf \{ n \ge 1 \colon S_n \ge f_a(n) \},$$

which was investigated in [3,4].

For $f_a(t) \equiv a$ we have the following form of the first passage time

$$v_a = \inf \{ n \ge 1 \colon \Delta(\overline{S}_n) \ge a \}$$

see [1,4].

In sequential analysis the statistics in the form $T_n = n\Delta(\overline{S}_n)$ are widely used.

Let F_{θ} , $\theta \in \Theta$ be a one-parameter exponential family with natural parameter space Θ , that is

$$F_{\theta}(dx) = \exp\left\{\theta \, x - \psi(\theta)\right\} \lambda(dx), -\infty < x < \infty, \ \theta \in \Omega$$

where λ is a non-degenerated, sigma-finite measure on $(-\infty, \infty)$ and Θ consists all θ for which $\exp{\{\theta x\}}$ is integrable function with respect to λ ; that is

$$e^{\psi(\theta)} = \int e^{\theta x} \lambda(dx) < \infty$$

for $\theta \in \Theta$.

Recall that the log-likelihood function, given $\xi_1, ..., \xi_n$ which common distribution F_{θ} is

$$L_{n}(\theta) = n[\theta S_{n} - \psi(\theta)], \ \theta \in \Theta$$

Consider testing of the hypothesis $\theta = \theta_0$ versus $\theta \neq \theta_0$.

Let $\Delta(x) = \sup_{\theta} \{ (\theta - \theta_0) x - [\psi(\theta) - \psi(\theta_0)] \}, x \in (-\infty, \infty).$

Then $T_n = n\Delta(\frac{S_n}{n})$ is the log-likelihood ratio statistic for testing $\theta = \theta_0$ versus $\theta \neq \theta_0$ on the basis of $\xi_1, \dots, \xi_n, n > 1$.

As shown in [] the function $\Delta(x)$ may be infinite for some values of x, but $P(T_n < \infty) = 1$. The function $\Delta(x)$ in special case is straightly forward to compute:

1) If F_{θ} is the normal distribution with mean θ , $-\infty < \theta < \infty$ and has unit variance, then $\theta = \psi'(\theta)$ and $\psi(\theta) = \frac{\theta^2}{2}$. If the null hypothesis is that $H_0: \theta = 0$, then it easily follows that

that

$$\Delta(x) = \frac{x^2}{2}.$$

Consider a problem of testing the null hypothesis $H_0: \theta = 0$. If a sample has (nonrandom) size n, then out comes for which the absolute value of $S_n = \xi_1 + ... + \xi_n$ exceeds $3\sqrt{n}$ would be regarded as strong evidence against the null hypothesis H_0 , according to classical statistical theory. If data arrives sequentially and S_n is computed for each $n \ge 1$ them $|S_n|$ exceedes $3\sqrt{n}$ for some n, even if H_0 is true. The low of an iterated logarithm asserts that

$$P\left(\limsup_{n \to \infty} \sup \frac{S_n - n\theta}{\sqrt{2n \log \log n}} = 1\right) = 1.$$

In this case we have sample of the size

$$v = v_a = \inf \left\{ n \ge 1 : \left| S_n \right| \ge a \sqrt{n} \right\},$$

where $a \ge 3$ and reject H_0 if $|S_v| > 3\sqrt{v}$.

2) Let $\xi_1, \xi_2, ...$ be independent random variables taking the values 1 and 0 with probabilities θ and $1-\theta$ respectively. Let $S_n = \xi_1 + ... + \xi_n$ and $\Delta(x) = x \log x + (1-x) \log (1-x) + \log 2$. To test $H_0: \theta = \frac{1}{2}$ against $H_1: \theta \neq \frac{1}{2}$. Let $1 \le m_0 \le m$ and

$$v_a = \inf\left\{n \ge m_0 : n\Delta\left(\frac{S_n}{n}\right) \ge a\right\}.$$

Stop sampling at min (v_a, m) and reject H_0 if $T \le m$ or T > m and $T_m = m \Delta(S_m/m) \ge d$ $(d \le a)$.

We'll assume that the function $\Delta(x)$ is positive, twice continuous-differentiable on $x \in (-\infty, \infty)$, moreover $\mu = \Delta(v) > 0$ and $\Delta'(v) \neq 0$.

For the boundary $f_a(t)$ we'll assume that it satisfies to the following conditions:

- 1) for each *a* the function $f_a(t)$ increases monotonically, is continuously differentiable for t > 0, and $f_a(t) \uparrow \infty$, $a \to \infty$.
- 2) $n = n(\alpha) \to \infty$, $a \to \infty$. Thus $\frac{1}{n} f_a(n) \to \mu$ and $f_a(n) \to \theta$ for some $\theta \in [0, \mu)$.
- 3) For each *a* the function $f'_a(t)$ weakly oscillates at infinity, i.e.

$$\frac{f'_a(n)}{f'_a(m)} \rightarrow 1 \text{ at } \frac{n}{m} \rightarrow 1, n \rightarrow \infty.$$

Denote $N_a = N_a(\mu)$ a solution of the equation $f_a(n) = n\mu$ which exists for sufficiently large *a* [3]. Also denote $\Phi(x)$ a standard normal distribution.

Theorem. Let ξ_n , $n \ge 1$ be a sequence of independent and identically distributed random variables with $\sigma^2 = D\xi_2 < \infty$, $v = E\xi_1$ and let above mentioned conditions are satisfied for function $\Delta(x)$ and boundary $f_a(t)$.

Then

$$\lim_{a\to\infty} P\left(\tau_a - N_a \leq \frac{rx}{\lambda}\sqrt{N_a}\right) = \Phi(x), \ r = \left|\Delta'(v)\right|\sigma,$$

where $\lambda = \mu - \theta$.

Corollary. Let the conditions of the theorem are true and $n = n(\alpha) \rightarrow \infty$ as $a \rightarrow \infty$ such that

$$c_n = \frac{f_a(n) - n\mu}{r\sqrt{n}} = O(1).$$

Then

$$\lim_{a\to\infty} [P(\tau_a \le n) - \Phi(-c_n)] = 0.$$

Theorem and corollary proved in [3].

We present example, which is especially instructive (see [1]). Let ξ_1, ξ_2, \dots be independent and normally distributed random variables with mean μ and unit variance. It is testing $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1$ (say $\mu_0 < \mu_1$).

The likelihood ratio is

$$L_n = \prod_{k=1}^n \frac{\varphi(\xi_k - \mu_1)}{\varphi(\xi_k - \mu_0)} = e^{(\mu_1 - \mu_0)S_n - \frac{n}{2}(\mu_1^2 - \mu_0^2)}$$

where $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ and $S_n = \sum_{k=1}^n \xi_k$.

The stopping rule of sequentially probability ratio test can be written

$$\tau = \inf \{ n \ge 1: S_n - \frac{n}{2} (\mu_1 + \mu_0) \notin (a, b) \},$$
(1)

where $a = \log \frac{A}{\mu_1 - \mu_0}$, $b = \log \frac{B}{\mu_1 - \mu_0}$, (A < 1 < B) are constants.

If $\tau < \infty$ the sequential probability ratio test rejects H_0 if and only if

$$S_N \ge b + \frac{\tau}{2} (\mu_1 + \mu_0).$$

A simple special case is the symmetric one $\mu_1 = -\mu_0$, b = -a, for which (1) becomes

$$\tau_b = \inf \left\{ n \ge 1 \colon \left| S_n \right| \ge b \right\}.$$

The main results of [3] implies approximation of the distribution of the sample size τ_b :

$$P_{\mu}(\tau_b \leq n) \approx \Phi\left(\frac{n\mu - b}{\sqrt{n}}\right), \ \mu \neq 0.$$

We also study the approximation of the significance level and power of stopping rule t_a by the results of work [3].

References

- D. Siegmund. Sequential analysis. Tests and confidence intervals New York, etc. Springer – Verlag, 1985, 272 p.
- 2. Hajiev A., Rahimov F.Applcation repeated significance tests comparing more than two treatments in clinical experiment(in Russian). The international conference "Problems of cybernetics and informatics", v.1, pp. 190-193.
- 3. Hajiev A., Rahimov F. On generalization of one class of the first passage time of random walk for the linear boundary. Transactions of NAS of Azerbaijan 2006. № V. XXVI, pp. 59-66.
- 4. Woodroof M., Nonlinear renewal theory in sequential analysis. SIAM, 1982, 119 p.