# SOME APPROXIMATIONS FORMULAS FOR CHARACTERISTICS OF TESTS WITH LINEAR AND CURVED STOPPING BOUNDARIES 

Asaf Hajiyev ${ }^{1}$, Fada Rahimov ${ }^{2}$<br>${ }^{1}$ Institute of Cybernetics of ANAS, Baku, Azerbaijan, asaf@baku-az.net<br>${ }^{2}$ Baku State Universitety, Baku, Azerbaijan, ragimovf@rambler.ru

The ordinary sequential probability ratio test is defined by the crossing of linear boundaries by random walk. The linear boundaries a rise from sequential probability ratio tests of simple hypotheses against simple alternatives. For problems involving several parameters or composite hypotheses we'll consider curved stopping boundaries, which have a complicated structure and so their investigations meet some difficulties [1,2].

The asymptotic formulas for approximation of a significance level, power and expected sample size for tests with linear and curved stopping boundaries will be discussed in this paper and it will be compared with results of [3].

In [3] the following boundary problem was investigated. Let $\xi_{n}, n \geq 1$ be a sequence of independent and identically distributed random variable with finite mean value $V=E \xi_{1}$ and it is assumed that the Borel function $\Delta(x), x \in(-\infty, \infty)$ is given. Additionally assume

$$
S_{n}=\sum_{k=1}^{n} \xi_{k}, \bar{S}_{n}=\frac{1}{n} S_{n}, T_{n}=n \Delta\left(\bar{S}_{n}\right), \tau_{a}=\inf \left\{n \geq 1: T_{n} \geq f_{a}(n)\right\}
$$

where $f_{a}(t), a>0, t>0$ is a some family of nonlinear boundaries and $\inf \{\varnothing\}=\infty$.
Note that the series of first passage time in theory of boundary crossing problems for random walks have the form $\tau_{a}$. For example, if $\Delta(x) \equiv X$, then we obtain the following first passage time

$$
t_{a}=\inf \left\{n \geq 1: S_{n} \geq f_{a}(n)\right\}
$$

which was investigated in $[3,4]$.
For $f_{a}(t) \equiv a$ we have the following form of the first passage time

$$
v_{a}=\inf \left\{n \geq 1: \Delta\left(\bar{S}_{n}\right) \geq a\right\}
$$

see $[1,4]$.
In sequential analysis the statistics in the form $T_{n}=n \Delta\left(\bar{S}_{n}\right)$ are widely used.
Let $F_{\theta}, \theta \in \Theta$ be a one-parameter exponential family with natural parameter space $\Theta$, that is

$$
F_{\theta}(d x)=\exp \{\theta x-\psi(\theta)\} \lambda(d x),-\infty<x<\infty, \theta \in \Omega
$$

where $\lambda$ is a non-degenerated, sigma-finite measure on $(-\infty, \infty)$ and $\Theta$ consists all $\theta$ for which $\exp \{\theta x\}$ is integrable function with respect to $\lambda$; that is

$$
e^{\psi(\theta)}=\int e^{\theta x} \lambda(d x)<\infty
$$

for $\theta \in \Theta$.

Recall that the log-likelihood function, given $\xi_{1}, \ldots, \xi_{n}$ which common distribution $F_{\theta}$ is

$$
L_{n}(\theta)=n\left[\theta \bar{S}_{n}-\psi(\theta)\right], \theta \in \Theta
$$

Consider testing of the hypothesis $\theta=\theta_{0}$ versus $\theta \neq \theta_{0}$.
Let $\Delta(x)=\sup _{\theta}\left\{\left(\theta-\theta_{0}\right) x-\left[\psi(\theta)-\psi\left(\theta_{0}\right)\right]\right\}, x \in(-\infty, \infty)$.
Then $T_{n}=n \Delta\left(\frac{S_{n}}{n}\right)$ is the log-likelihood ratio statistic for testing $\theta=\theta_{0}$ versus $\theta \neq \theta_{0}$ on the basis of $\xi_{1}, \ldots, \xi_{n}, n>1$.

As shown in [] the function $\Delta(x)$ may be infinite for some values of $x$, but $P\left(T_{n}<\infty\right)=1$. The function $\Delta(x)$ in special case is straightly forward to compute:

1) If $F_{\theta}$ is the normal distribution with mean $\theta,-\infty<\theta<\infty$ and has unit variance, then $\theta=\psi^{\prime}(\theta)$ and $\psi(\theta)=\frac{\theta^{2}}{2}$. If the null hypothesis is that $H_{0}: \theta=0$, then it easily follows that

$$
\Delta(x)=\frac{x^{2}}{2}
$$

Consider a problem of testing the null hypothesis $H_{0}: \theta=0$. If a sample has (nonrandom) size $n$, then out comes for which the absolute value of $S_{n}=\xi_{1}+\ldots+\xi_{n}$ exceeds $3 \sqrt{n}$ would be regarded as strong evidence against the null hypothesis $H_{0}$, according to classical statistical theory. If data arrives sequentially and $S_{n}$ is computed for each $n \geq 1$ them $\left|S_{n}\right|$ exceedes $3 \sqrt{n}$ for some $n$, even if $H_{0}$ is true. The low of an iterated logarithm asserts that

$$
P\left(\lim _{n \rightarrow \infty} \sup \frac{S_{n}-n \theta}{\sqrt{2 n \log \log n}}=1\right)=1
$$

In this case we have sample of the size

$$
v=v_{a}=\inf \left\{n \geq 1:\left|S_{n}\right| \geq a \sqrt{n}\right\}
$$

where $a \geq 3$ and reject $H_{0}$ if $\left|S_{v}\right|>3 \sqrt{v}$.
2) Let $\xi_{1}, \xi_{2}, \ldots$ be independent random variables taking the values 1 and 0 with probabilities $\theta$ and $1-\theta \quad$ respectively. Let $\quad S_{n}=\xi_{1}+\ldots+\xi_{n} \quad$ and $\Delta(x)=x \log x+(1-x) \log (1-x)+\log 2$. To test $H_{0}: \theta=\frac{1}{2}$ against $H_{1}: \theta \neq \frac{1}{2}$. Let $1 \leq m_{0} \leq m$ and

$$
v_{a}=\inf \left\{n \geq m_{0}: n \Delta\left(\frac{S_{n}}{n}\right) \geq a\right\}
$$

Stop sampling at $\min \left(v_{a}, m\right)$ and reject $H_{0}$ if $T \leq m \quad$ or $T>m$ and $T_{m}=m \Delta\left(S_{m} / m\right) \geq d(d \leq a)$.
We'll assume that the function $\Delta(x)$ is positive, twice continuous-differentiable on $x \in(-\infty, \infty)$, moreover $\mu=\Delta(v)>0$ and $\Delta^{\prime}(v) \neq 0$.
For the boundary $f_{a}(t)$ we'll assume that it satisfies to the following conditions:

1) for each $a$ the function $f_{a}(t)$ increases monotonically, is continuously differentiable for $t>0$, and $f_{a}(t) \uparrow \infty, a \rightarrow \infty$.
2) $n=n(\alpha) \rightarrow \infty, \quad a \rightarrow \infty$. Thus $\frac{1}{n} f_{a}(n) \rightarrow \mu$ and $f_{a}(n) \rightarrow \theta$ for some $\theta \in[0, \mu)$.
3) For each $a$ the function $f_{a}^{\prime}(t)$ weakly oscillates at infinity, i.e.

$$
\frac{f_{a}^{\prime}(n)}{f_{a}^{\prime}(m)} \rightarrow 1 \text { at } \frac{n}{m} \rightarrow 1, n \rightarrow \infty
$$

Denote $N_{a}=N_{a}(\mu)$ a solution of the equation $f_{a}(n)=n \mu$ which exists for sufficiently large $a$ [3]. Also denote $\Phi(x)$ a standard normal distribution.
Theorem. Let $\xi_{n}, n \geq 1$ be a sequence of independent and identically distributed random variables with $\sigma^{2}=D \xi_{2}<\infty, v=E \xi_{1}$ and let above mentioned conditions are satisfied for function $\Delta(x)$ and boundary $f_{a}(t)$.

Then

$$
\lim _{a \rightarrow \infty} P\left(\tau_{a}-N_{a} \leq \frac{r x}{\lambda} \sqrt{N_{a}}\right)=\Phi(x), r=\left|\Delta^{\prime}(v)\right| \sigma
$$

where $\lambda=\mu-\theta$.
Corollary. Let the conditions of the theorem are true and $n=n(\alpha) \rightarrow \infty$ as $a \rightarrow \infty$ such that

$$
c_{n}=\frac{f_{a}(n)-n \mu}{r \sqrt{n}}=O(1)
$$

Then

$$
\lim _{a \rightarrow \infty}\left[P\left(\tau_{a} \leq n\right)-\Phi\left(-c_{n}\right)\right]=0
$$

Theorem and corollary proved in [3].
We present example, which is especially instructive (see [1]). Let $\xi_{1}, \xi_{2}, \ldots$ be independent and normally distributed random variables with mean $\mu$ and unit variance. It is testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu=\mu_{1}\left(\right.$ say $\left.\mu_{0}<\mu_{1}\right)$.

The likelihood ratio is

$$
L_{n}=\prod_{k=1}^{n} \frac{\varphi\left(\xi_{k}-\mu_{1}\right)}{\varphi\left(\xi_{k}-\mu_{0}\right)}=e^{\left(\mu_{1}-\mu_{0}\right) S_{n}-\frac{n}{2}\left(\mu_{1}^{2}-\mu_{0}^{2}\right)}
$$

where $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ and $S_{n}=\sum_{k=1}^{n} \xi_{k}$.
The stopping rule of sequentially probability ratio test can be written

$$
\begin{equation*}
\tau=\inf \left\{n \geq 1: S_{n}-\frac{n}{2}\left(\mu_{1}+\mu_{0}\right) \notin(a, b)\right\}, \tag{1}
\end{equation*}
$$

where $a=\log \frac{A}{\mu_{1}-\mu_{0}}, b=\log \frac{B}{\mu_{1}-\mu_{0}},(A<1<B)$ are constants.
If $\tau<\infty$ the sequential probability ratio test rejects $H_{0}$ if and only if

$$
S_{N} \geq b+\frac{\tau}{2}\left(\mu_{1}+\mu_{0}\right)
$$

A simple special case is the symmetric one $\mu_{1}=-\mu_{0}, b=-a$, for which (1) becomes

$$
\tau_{b}=\inf \left\{n \geq 1:\left|S_{n}\right| \geq b\right\}
$$

The main results of [3] implies approximation of the distribution of the sample size $\tau_{b}$ :

$$
P_{\mu}\left(\tau_{b} \leq n\right) \approx \Phi\left(\frac{n \mu-b}{\sqrt{n}}\right), \mu \neq 0
$$

We also study the approximation of the significance level and power of stopping rule $t_{a}$ by the results of work [3].

## References

1. D. Siegmund. Sequential analysis. Tests and confidence intervals - New York, etc. Springer - Verlag, 1985, 272 p.
2. Hajiev A., Rahimov F.Applcation repeated significance tests comparing more than two treatments in clinical experiment( in Russian). The international conference "Problems of cybernetics and informatics", v.1, pp. 190-193.
3. Hajiev A., Rahimov F. On generalization of one class of the first passage time of random walk for the linear boundary. Transactions of NAS of Azerbaijan 2006. № V. XXVI, pp. 5966.
4. Woodroof M., Nonlinear renewal theory in sequential analysis. SIAM, 1982, 119 p.
