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1. Hyperbolic spaces 
 
    The best known hyperbolic space is the Poincaré half-plane consisting of the set of points 

 endowed with the metric  { 0:),(2 >=+ yyxH }
 

 ds²= 2

22

y
dydx +

.  

 
    In   the position of points can be defined by means of cartesian 
coordinates  or by hyperbolic coordinates (η,α) which are connected by means of the 
formulas 
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 The geodesic lines in  are represented by half-circles with center on y=0 
or vertical half-lines, the hyperbolic distance between two arbitrary points  and 

of  is given by 

{ 0:),(2 >=+ yyxH
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 For a right hyperbolic triangle the following Pythagorean theorem holds 
 
 coshη=cosh 1η cosh 2η . 
 
 Another important hyperbolic space is the Poincaré disk D={(u,v): u²+v²<1 } and points (x,y)∈  

 are mapped onto D by means of the conformal transformation { 0:),(2 >=+ yyxH }
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2. Hyperbolic Brownian motion in  +

2H
 
Hyperbolic Brownian motion in  is a diffusion with generator +

2H
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The transition function  is the solution to the Cauchy problem ),,( tyxpH
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 The previous problem in hyperbolic coordinates reads 
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 from  which  we extract the Cauchy problem for the hyperbolic distance 
 

 =
∂
∂

t
pH ,)(sinh

sinh
1

2
1

Hp
η

η
ηη ∂

∂
∂
∂

         0, >tη  

          ).()0,( ηδη =Hp  
 
 The solution to the previous problem (after the time change t′=t/2) is 
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 From the form of the generator 
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y we can see that the coordinates (X,Y) are 

solutions to the stochastic differential system 
 

dX=Yd ,      X(0)=0, 1B
dY=Yd ,      Y(0)=1.  2B

 
 The solution to the previous problem is given by 
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 where ,  are independent Brownian motions. 1B 2B
 
 
 
 
3. Hyperbolic Brownian motion in D 
 
 
    The law of Brownian in the disk D is solution of 
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 in cartesian coordinates, 
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 in polar coordinates, 
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 in hyperbolic coordinates. The initial conditions must be written accordingly. 
    A basic fact about the above equations is that 
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 is the eigenfunction corresponding to the hyperbolic Laplacian, that is 
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 The Poisson kernel  can also be given in hyperbolic coordinates η, φ as );,( φθν rG
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 and possesses the property that 
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4. Random motions at finite velocity 
 
    The hyperbolic Brownian motion hardly reflects the underlying structure of the hyperbolic 
space where it develops. Motions at finite velocity on geodesic lines have been introduced and 
analyzed in Orsingher and De Gregorio (2007) and Cammarota and Orsingher (2008). 
    In particular, in the last paper a motion on half-circle geodesics at hyperbolic constant 
velocity c is studied when deviations on orthogonal lines are assumed to occur at Poisson times. 
    The explicit form of the mean distance of the randomly moving point is obtained and reads 
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 where λ is the rate of the Poisson process. 
    Many other properties of this finite-velocity motion are derived and its version adapted on the 
sphere are also considered. 
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